Precipitate Behavior and Microstructure Evolution of γ’ Phase in Ni-Al Alloys with the Internal Elastic Strain

Article Preview

Abstract:

The microstructure evolution and precipitation behaviors of ordered γ (Ni3Al) phase in Ni-Al alloys were studied using the phase field dynamic model. Under the interactions of internal elastic strain, the γ phase morphology changes from the separated cuboidal to connected rectangle shape with the decrease of the aging temperature or the increase of the Al concentration. It also shows that the ordering of precipitates is finished instantly when they precipitate from the matrix phase. The γ phase volume fraction and the phase transformation velocity are affected by the aging temperature and composition of the Ni-Al alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

491-497

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.M. Pollock, A.S. Argon, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, Acta Mater. 42 (1994) 1859-1874.

DOI: 10.1016/0956-7151(94)90011-6

Google Scholar

[2] G. Boussinot, Y.L. Bouar, A. Finel, Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, Acta Mater. 58 (2010) 4170-4181.

DOI: 10.1016/j.actamat.2010.04.008

Google Scholar

[3] J. Coakley, H. Basoalto, D. Dye, Coarsening of a multimodal nickel-base superalloy, Acta Mater. 58 (2010) 4019-4028.

DOI: 10.1016/j.actamat.2010.03.017

Google Scholar

[4] T. Wang, G. Sheng, Z.K. Liu, Coarsening kinetics of γ' precipitates in the Ni–Al–Mo system, Acta Mater. 56 (2008) 5544-5551.

DOI: 10.1016/j.actamat.2008.07.024

Google Scholar

[5] J. Kundina, L. Mushongeraa, T. Goehlerb, Phase-field modeling of the γ'-coarsening behavior in Ni-based superalloys, Acta Mater. 60 (2012) 3758-3772.

DOI: 10.1016/j.actamat.2012.03.023

Google Scholar

[6] J. Tiley, G.B. Viswanathan, R. Srinivasan, Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT, Acta Mater. 57 (2009) 2538-2549.

DOI: 10.1016/j.actamat.2009.02.010

Google Scholar

[7] H. Wendt, P. Hassen, Nucleation and growth of γ'-Precipitates in Ni-14 at. % Al, Acta Mater. 31 (1983) 1649-1659.

DOI: 10.1016/0001-6160(83)90163-3

Google Scholar

[8] D. Banerjee, R. Banerjee, Y. Wang, Formation of split patterns of γ' precipitates in Ni-Al via particle aggregation, Script Mater. 41 (1999) 1023-1030.

DOI: 10.1016/s1359-6462(99)00223-7

Google Scholar

[9] V. Vaithyanathan, L.Q. Chen, Coarsening of ordered intermetallic precipitates with coherency stress, Acta Mater. 50 (2002) 4061-4073.

DOI: 10.1016/s1359-6454(02)00204-5

Google Scholar

[10] J.R. Soh, H.M. Lee, Phenomenological phase diagram calculation of the Ni Al system in the Ni-rich region, Acta Mater. 45 (1997) 4743-4749.

DOI: 10.1016/s1359-6454(97)00137-7

Google Scholar

[11] A.J. Ardell, A. Maheshwari, Coherent equilibrium in alloys containing spherical precipitates, Acta Mater. 43 (1995) 1825-1835.

DOI: 10.1016/0956-7151(94)00398-2

Google Scholar

[12] R. Fischer, L.T.F. Eleno, G. Frommeyer, Precipitation of Cr-rich phases in a Ni–50Al–2Cr (at. %) alloy, Intermetallics. 14 (2006) 156-162.

DOI: 10.1016/j.intermet.2005.04.017

Google Scholar

[13] J. Lapin, A. Vauo, Coarsening kinetics of α- and γ'-precipitates in a multiphase intermetallic Ni–Al–Cr–Ti type alloy with additions of Mo and Zr, Script Mater. 50 (2004) 571-575.

DOI: 10.1016/j.scriptamat.2003.11.057

Google Scholar

[14] Y. Wang, A.G. Khachaturyan, Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics, Script Mater. 31 (1994) 1425-1430.

DOI: 10.1016/0956-716x(94)90130-9

Google Scholar

[15] Y. Wang, A.G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Mater. 43 (1995) 1837-1857.

DOI: 10.1016/0956-7151(94)00406-8

Google Scholar

[16] Y. Wang, D. Banerjee, C.C. Su, Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f. c. c. solid solution, Acta Mater. 46 (1998) 2983-3001.

DOI: 10.1016/s1359-6454(98)00015-9

Google Scholar

[17] J.C. Wang, M. Osawa, T. Yokokawa, Phase-field modeling with CALPHAD and CVM for microstructural evolution of Ni-base superalloys, TMS. (2004) 933-940.

DOI: 10.7449/2004/superalloys_2004_933_940

Google Scholar

[18] J.C. Wang, M. Osawa, T. Yokokawa, Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM, Comput. Mat. Sci. 39 (2007) 871-879.

DOI: 10.1016/j.commatsci.2006.10.014

Google Scholar

[19] Y.H. Wen, J.P. Simmons, C. Shen, Phase-field modeling of bimodal particle size distributions during continuous cooling, Acta Mater. 51 (2003) 1123-1132.

DOI: 10.1016/s1359-6454(02)00516-5

Google Scholar

[20] Y.H. Wen, B. Wang, J.P. Simmons, A phase-field model for heat treatment applications in Ni-based alloys, Acta Mater. 54 (2006) 2087-(2099).

DOI: 10.1016/j.actamat.2006.01.001

Google Scholar

[21] I. Ansara, N. Dupin, H.L. Lukas, Thermodynamic assessment of the Al-Ni system, J. Alloy Comp. 247 (1997) 20-30.

Google Scholar

[22] A.G. Khachaturyan, Theory of structural transformations in solids, wiley, New York, (1983).

Google Scholar

[23] R.R. Nagarajan, A.K. Jena, R.K. Ray, Lattice parameters and bonding characteristics of boron-doped hafnium containing trinickel aluminide alloys, Mater. Sci. Eng. A. 244 (1998) 284-290.

DOI: 10.1016/s0921-5093(97)00648-5

Google Scholar

[24] H. Pottenbohm, G. Neitze, E. Nembach, Elastic properties (the stiffness constants, the shear modulus and the dislocation line energy and tension) of Ni-Al solid solutions and of the Nimonic alloy PE16, Mater. Sci. Eng. 60 (1983) 189-194.

DOI: 10.1016/0025-5416(83)90001-0

Google Scholar