[1]
T.M. Pollock, A.S. Argon, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, Acta Mater. 42 (1994) 1859-1874.
DOI: 10.1016/0956-7151(94)90011-6
Google Scholar
[2]
G. Boussinot, Y.L. Bouar, A. Finel, Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, Acta Mater. 58 (2010) 4170-4181.
DOI: 10.1016/j.actamat.2010.04.008
Google Scholar
[3]
J. Coakley, H. Basoalto, D. Dye, Coarsening of a multimodal nickel-base superalloy, Acta Mater. 58 (2010) 4019-4028.
DOI: 10.1016/j.actamat.2010.03.017
Google Scholar
[4]
T. Wang, G. Sheng, Z.K. Liu, Coarsening kinetics of γ' precipitates in the Ni–Al–Mo system, Acta Mater. 56 (2008) 5544-5551.
DOI: 10.1016/j.actamat.2008.07.024
Google Scholar
[5]
J. Kundina, L. Mushongeraa, T. Goehlerb, Phase-field modeling of the γ'-coarsening behavior in Ni-based superalloys, Acta Mater. 60 (2012) 3758-3772.
DOI: 10.1016/j.actamat.2012.03.023
Google Scholar
[6]
J. Tiley, G.B. Viswanathan, R. Srinivasan, Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT, Acta Mater. 57 (2009) 2538-2549.
DOI: 10.1016/j.actamat.2009.02.010
Google Scholar
[7]
H. Wendt, P. Hassen, Nucleation and growth of γ'-Precipitates in Ni-14 at. % Al, Acta Mater. 31 (1983) 1649-1659.
DOI: 10.1016/0001-6160(83)90163-3
Google Scholar
[8]
D. Banerjee, R. Banerjee, Y. Wang, Formation of split patterns of γ' precipitates in Ni-Al via particle aggregation, Script Mater. 41 (1999) 1023-1030.
DOI: 10.1016/s1359-6462(99)00223-7
Google Scholar
[9]
V. Vaithyanathan, L.Q. Chen, Coarsening of ordered intermetallic precipitates with coherency stress, Acta Mater. 50 (2002) 4061-4073.
DOI: 10.1016/s1359-6454(02)00204-5
Google Scholar
[10]
J.R. Soh, H.M. Lee, Phenomenological phase diagram calculation of the Ni Al system in the Ni-rich region, Acta Mater. 45 (1997) 4743-4749.
DOI: 10.1016/s1359-6454(97)00137-7
Google Scholar
[11]
A.J. Ardell, A. Maheshwari, Coherent equilibrium in alloys containing spherical precipitates, Acta Mater. 43 (1995) 1825-1835.
DOI: 10.1016/0956-7151(94)00398-2
Google Scholar
[12]
R. Fischer, L.T.F. Eleno, G. Frommeyer, Precipitation of Cr-rich phases in a Ni–50Al–2Cr (at. %) alloy, Intermetallics. 14 (2006) 156-162.
DOI: 10.1016/j.intermet.2005.04.017
Google Scholar
[13]
J. Lapin, A. Vauo, Coarsening kinetics of α- and γ'-precipitates in a multiphase intermetallic Ni–Al–Cr–Ti type alloy with additions of Mo and Zr, Script Mater. 50 (2004) 571-575.
DOI: 10.1016/j.scriptamat.2003.11.057
Google Scholar
[14]
Y. Wang, A.G. Khachaturyan, Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics, Script Mater. 31 (1994) 1425-1430.
DOI: 10.1016/0956-716x(94)90130-9
Google Scholar
[15]
Y. Wang, A.G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Mater. 43 (1995) 1837-1857.
DOI: 10.1016/0956-7151(94)00406-8
Google Scholar
[16]
Y. Wang, D. Banerjee, C.C. Su, Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f. c. c. solid solution, Acta Mater. 46 (1998) 2983-3001.
DOI: 10.1016/s1359-6454(98)00015-9
Google Scholar
[17]
J.C. Wang, M. Osawa, T. Yokokawa, Phase-field modeling with CALPHAD and CVM for microstructural evolution of Ni-base superalloys, TMS. (2004) 933-940.
DOI: 10.7449/2004/superalloys_2004_933_940
Google Scholar
[18]
J.C. Wang, M. Osawa, T. Yokokawa, Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM, Comput. Mat. Sci. 39 (2007) 871-879.
DOI: 10.1016/j.commatsci.2006.10.014
Google Scholar
[19]
Y.H. Wen, J.P. Simmons, C. Shen, Phase-field modeling of bimodal particle size distributions during continuous cooling, Acta Mater. 51 (2003) 1123-1132.
DOI: 10.1016/s1359-6454(02)00516-5
Google Scholar
[20]
Y.H. Wen, B. Wang, J.P. Simmons, A phase-field model for heat treatment applications in Ni-based alloys, Acta Mater. 54 (2006) 2087-(2099).
DOI: 10.1016/j.actamat.2006.01.001
Google Scholar
[21]
I. Ansara, N. Dupin, H.L. Lukas, Thermodynamic assessment of the Al-Ni system, J. Alloy Comp. 247 (1997) 20-30.
Google Scholar
[22]
A.G. Khachaturyan, Theory of structural transformations in solids, wiley, New York, (1983).
Google Scholar
[23]
R.R. Nagarajan, A.K. Jena, R.K. Ray, Lattice parameters and bonding characteristics of boron-doped hafnium containing trinickel aluminide alloys, Mater. Sci. Eng. A. 244 (1998) 284-290.
DOI: 10.1016/s0921-5093(97)00648-5
Google Scholar
[24]
H. Pottenbohm, G. Neitze, E. Nembach, Elastic properties (the stiffness constants, the shear modulus and the dislocation line energy and tension) of Ni-Al solid solutions and of the Nimonic alloy PE16, Mater. Sci. Eng. 60 (1983) 189-194.
DOI: 10.1016/0025-5416(83)90001-0
Google Scholar