Indenter Size Effect on the Incipient Plasticity of Al (001) Surface

Article Preview

Abstract:

ndenter size effect on the incipient plasticity of Al (001) surface is studied by using the quasicontinuum simulation method. Two cylindrical indenters with the radii 2.5nm and 40nm are used to penetrate the surface respectively, and in displacement-control in steps of 0.02 nm. Results show that the plasticity under the small indenter is activated by discrete dislocation nucleation events, while the plasticity under the large indenter is dominated by a collective dislocation activity. Contact pressure calculations reveal that reversible incipient plasticity occurs under the small indenter, i.e. the plastically deformed surface can completely recover upon withdrawal of the indenter, while the incipient plasticity under the large indenter seems to be irreversible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

510-517

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.H. Kim, D.B. Asay, and M.T. Dugger, Nanotribology and MEMS, Nanotoday. 2 (2007) 22-29.

Google Scholar

[2] A.S. Christopher, Nanoindentation studies of materials, Materialstoday. 9 (2006) 32-40.

Google Scholar

[3] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.L. Shen, Indentation across size scales and disciplines: Recent developments in experimentation and modeling, Acta Mater. 55 (2007) 4015-4039.

DOI: 10.1016/j.actamat.2006.08.044

Google Scholar

[4] E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation, J. Mech. Phys. Solids. 51 (2003) 901-920.

DOI: 10.1016/s0022-5096(02)00119-9

Google Scholar

[5] K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B. 67 (2003) 104105.

DOI: 10.1103/physrevb.67.104105

Google Scholar

[6] D. Saraev, R.E. Miller, Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings, Acta Mater. 54 (2006) 33-45.

DOI: 10.1016/j.actamat.2005.08.030

Google Scholar

[7] A.M. Minor, S.A. Syed Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, A new view of the onset of plasticity during the nanoindentation of aluminium, Nat. Mater. 5 (2006) 697-702.

DOI: 10.1038/nmat1714

Google Scholar

[8] J. Knap, M. Ortiz, Effect of Indenter-Radius Size on Au(001) Nanoindentation, Phys. Rev. Lett. 90 (2003) 226102.

DOI: 10.1103/physrevlett.90.226102

Google Scholar

[9] M.R. Shankar, Surface steps lead to heterogeneous contact mechanics and facilitate dislocation nucleation in nanoindentation, Appl. Phys. Lett. 90 (2007) 171924.

DOI: 10.1063/1.2733027

Google Scholar

[10] E.B. Tadmor, R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, (2011).

Google Scholar

[11] E.B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A 73 (1996) 1529-1563.

DOI: 10.1080/01418619608243000

Google Scholar

[12] E.B. Tadmor, R. Phillips, and M. Ortiz, Mixed Atomistic and Continuum Models of Deformation in Solids, Langmuir 12 (1996) 4529-4534.

DOI: 10.1021/la9508912

Google Scholar

[13] E.B. Tadmor, R. Miller, and R. Phillips, Nanoindentation and incipient plasticity, J. Mater. Res. 14 (1999) 2233-2250.

DOI: 10.1557/jmr.1999.0300

Google Scholar

[14] D.B. Shan, L. Yuan, and B. Guo, Multiscale simulation of surface step effects on nanoindentation, Mater. Sci. Eng. A 412 (2005) 264-270.

DOI: 10.1016/j.msea.2005.08.198

Google Scholar

[15] F. Sansoz, V. Dupont, Grain growth behavior at absolute zero during nanocrystalline metal indentation, Appl. Phys. Lett. 89 (2006) 111901.

DOI: 10.1063/1.2352725

Google Scholar

[16] V. Dupont, F. Sansoz, Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum, Acta Mater. 56 (2008) 6013-6026.

DOI: 10.1016/j.actamat.2008.08.014

Google Scholar

[17] H.T. Wang, Z.D. Qin, Y.S. Ni, and W. Zhang, Multiscale simulation of the deformation in nano-indentation under different crystal orientations, Acta Phys. Sin. 58 (2009) 1057-1063.

DOI: 10.7498/aps.58.1057

Google Scholar

[18] J.W. Li, J.F. Mei, Y.S. Ni, H.B. Lu, and W.G. Jiang, Two-dimensional quasicontinuum analysis of the strengthening and weakening effect of Cu/Ag interface on nanoindentation, J. Appl. Phys. 108 (2010) 054309.

DOI: 10.1063/1.3452350

Google Scholar

[19] Y.F. Shao, S.Q. Wang, Quasicontinuum study on formation of fivefold deformation twin in nanocrystalline aluminum, Scripta Mater. 62 (2010) 419-422.

DOI: 10.1016/j.scriptamat.2009.12.005

Google Scholar

[20] Y.F. Shao, S.Q. Wang, An Examination on Atomic-level Stress Calculations by Nanoindentation Simulation via the Quasicontinuum Method, J. Mater. Sci. Tech. 26 (2010) 56-64.

DOI: 10.1016/s1005-0302(10)60009-6

Google Scholar

[21] J.W. Li, H.B. Lu, Y.S. Ni, and J.F. Mei, Quasicontinuum study the influence of misfit dislocation interactions on nanoindentation, Comput. Mater. Sci 50 (2011) 3162-3170.

DOI: 10.1016/j.commatsci.2011.05.045

Google Scholar

[22] H.B. Lu, J.W. Li, and Y.S. Ni, Position effect of cylindrical indenter on nanoindentation into Cu thin film by multiscale analysis, Comput. Mater. Sci 50 (2011) 2987-2992.

DOI: 10.1016/j.commatsci.2011.05.017

Google Scholar

[23] Y.F. Shao, X. Yang, X. Zhao, and S.Q. Wang, Investigation of grain boundary activity in nanocrystalline Al under an indenter by using a multiscale method, Chin. Phys. B 21 (2012) 083101.

DOI: 10.1088/1674-1056/21/8/083101

Google Scholar

[24] R.E. Miller, E.B. Tadmor, The Quasicontinuum Method: Overview, applications and current directions, J. Computer-Aided Mater. Design 9 (2002) 203-239.

Google Scholar

[25] E.B. Tadmor, R.E. Miller, The theory and implementation of the quasicontinuum method, in: S. Yip (Ed. ) Handbook of Materials Modeling, Part A - Methods, Springer-Verlag, New York, (2005).

Google Scholar

[26] M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[27] C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58 (1998) 11085-11088.

DOI: 10.1103/physrevb.58.11085

Google Scholar

[28] A.F. Voter, S.P. Chen, Accurate interatomic potentials for Ni, Al and Ni_3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175-180.

Google Scholar

[29] J. Li, AtomEye: an efficient atomistic configuration viewer, Modeling Simul. Mater. Sci. Eng. 11 (2003) 173-177.

DOI: 10.1088/0965-0393/11/2/305

Google Scholar

[30] J.D. Honeycutt, H.C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem. 91 (1987) 4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[31] Y.F. Shao, X. Zhao, J.H. Li, S.Q. Wang, submitted to Comput. Mater. Sci. (2012).

Google Scholar