Generating 2D Non-Equiaxed Initial Microstructure for Monte Carlo Simulation Using Modified Voronoi Model

Article Preview

Abstract:

A modified Voronoi model is established based on the Richards method to generate 2D non-equiaxed initial microstructure for Monte Carlo simulation. Microstructures produced by the ordinary Voronoi model are isotropic and cannot reflect the effects of the deformed grain shape on the annealing process. The modified Voronoi model based on ellipse set can be used to construct the deformed microstructure. The initial microstructure reflects the mean strain and the grain size distribution follows lognormal distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

540-544

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.P. Anderson, D.J. Srolovitz, G.S. Grest and P.S. Sahni, Computer simulation of grain growth- I. Kinetics, Acta Metallurgica . 32 (1984) 783-791.

DOI: 10.1016/0001-6160(84)90151-2

Google Scholar

[2] D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G.S. Grest, Computer simulation of grain growth – II . grain size distribution, topology, and local dynamics, Acta Metallurgica. 32 (1984) 793-802.

DOI: 10.1016/0001-6160(84)90152-4

Google Scholar

[3] B. Radhakrishnan and T. Zacharia, Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 26A (1995) 167-180.

DOI: 10.1007/bf02669802

Google Scholar

[4] S. Raghavan and S.S. Sahay, Modeling the grain growth kinetics by cellular automaton, Materials Science and Engineering A. 445-446 (2007) 203-209.

DOI: 10.1016/j.msea.2006.09.023

Google Scholar

[5] E.A. Holm, M.A. Miodownik and A.D. Rollett, On abnormal subgrain growth and the origin of recrystallization nuclei, Acta Materialia. 51 (2003) 2701-2716.

DOI: 10.1016/s1359-6454(03)00079-x

Google Scholar

[6] R . Messina, M. Soucail and L. Kubin, Monte Carlo simulation of abnormal grain growth in two dimensions, Materials Science and Engineering A. (2001) 258-267.

DOI: 10.1016/s0921-5093(00)01979-1

Google Scholar

[7] J.X. Zhang and X.J. Guan, Simulation of abnormal grain growth by Monte Carlo, Chinese Journal of Nonferrous Metals. 16 (2006) 1689-1697.

Google Scholar

[8] B.K. Kad and P.M. Hazzledine, Monte Carlo simulations of grain growth and Zener pinning, Materials Science & Engineering A. 238 (1997) 70-77.

DOI: 10.1016/s0921-5093(97)00435-8

Google Scholar

[9] G.S. Grest, M.P. Anderson, D.J. Srolovitz and A.D. Rollett, Abnormal grain growth in three dimensions, Scripta Metallurgica et Materialia. 24 (1990) 661-665.

DOI: 10.1016/0956-716x(90)90219-7

Google Scholar

[10] C. Wang, G.Q. Liu and X.G. Qin, Simulation study of evolution and quasi-stationary state from two initial grain structures, Acta metallurgica sinica. 39 (2003) 635-638.

Google Scholar

[11] Chang Soo Park, Tae Wook Na, Hyung Ki Park, Byeong Joo Lee, Chan Hee Han, and Nong Moon Hwang, Three-dimensional Monte Carlo simulation for the effect of precipitates and sub-boundaries on abnormal grain growth, Scripta Materialia. 66 (2012).

DOI: 10.1016/j.scriptamat.2011.11.045

Google Scholar

[12] Junyoung Park and Yoji Shibutani, Weighted Voronoi tessellation technique for internal structure of metallic glasses, Intermetallics. 15 (2007) 187-192.

DOI: 10.1016/j.intermet.2006.05.005

Google Scholar

[13] Albert and Schueller, A nearest neighbor sweep circle algorithm for computing discrete Voronoi tessellations, Journal of Mathematical Analysis and Application. 336 (2007) 1018-1025.

DOI: 10.1016/j.jmaa.2007.03.027

Google Scholar

[14] Mark Gerstein Jerry Tsai and Michael Levitt, The volume of atoms on the protein surface: Calculated from simulation using Voronoi polyhedra, J. Mol. Biol. 249 (1995) 955-966.

DOI: 10.1006/jmbi.1995.0351

Google Scholar

[15] H.X. Zhu, S.M. Thorpe and A.H. Windle, The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs, International Journal of Solids and Structures. 43 (2006) 1061-1078.

DOI: 10.1016/j.ijsolstr.2005.05.008

Google Scholar

[16] F.M. Richards, The interpretation of protein structures: total volume, group volume distributions and packing density, J. Mol. Biol. 82 (1974) 1-14.

DOI: 10.1016/0022-2836(74)90570-1

Google Scholar

[17] X.J. Guan, J.J. Zhou, X.M. Chen, Y. Li and J. Ma, Effect of cold-rolling reduction on recrystallization of extra low-carbon and high strength bake-hardening steel sheet during continuous annealing, Heat Treatment of Metals. 28 (2003) 31-33.

Google Scholar

[18] X.M. Shen, X.J. Guan, J.X. Zhang, Y.T. Liu, X.F. Ma and X.M. Zhao, Coupling of FEM with Monte Carlo for simulating recrystallization in cold rolling pure aluminum sheet, Chinese Journal of Nonferrous Metals. 17 (2007) 124-130.

Google Scholar