[1]
M.P. Anderson, D.J. Srolovitz, G.S. Grest and P.S. Sahni, Computer simulation of grain growth- I. Kinetics, Acta Metallurgica . 32 (1984) 783-791.
DOI: 10.1016/0001-6160(84)90151-2
Google Scholar
[2]
D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G.S. Grest, Computer simulation of grain growth – II . grain size distribution, topology, and local dynamics, Acta Metallurgica. 32 (1984) 793-802.
DOI: 10.1016/0001-6160(84)90152-4
Google Scholar
[3]
B. Radhakrishnan and T. Zacharia, Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 26A (1995) 167-180.
DOI: 10.1007/bf02669802
Google Scholar
[4]
S. Raghavan and S.S. Sahay, Modeling the grain growth kinetics by cellular automaton, Materials Science and Engineering A. 445-446 (2007) 203-209.
DOI: 10.1016/j.msea.2006.09.023
Google Scholar
[5]
E.A. Holm, M.A. Miodownik and A.D. Rollett, On abnormal subgrain growth and the origin of recrystallization nuclei, Acta Materialia. 51 (2003) 2701-2716.
DOI: 10.1016/s1359-6454(03)00079-x
Google Scholar
[6]
R . Messina, M. Soucail and L. Kubin, Monte Carlo simulation of abnormal grain growth in two dimensions, Materials Science and Engineering A. (2001) 258-267.
DOI: 10.1016/s0921-5093(00)01979-1
Google Scholar
[7]
J.X. Zhang and X.J. Guan, Simulation of abnormal grain growth by Monte Carlo, Chinese Journal of Nonferrous Metals. 16 (2006) 1689-1697.
Google Scholar
[8]
B.K. Kad and P.M. Hazzledine, Monte Carlo simulations of grain growth and Zener pinning, Materials Science & Engineering A. 238 (1997) 70-77.
DOI: 10.1016/s0921-5093(97)00435-8
Google Scholar
[9]
G.S. Grest, M.P. Anderson, D.J. Srolovitz and A.D. Rollett, Abnormal grain growth in three dimensions, Scripta Metallurgica et Materialia. 24 (1990) 661-665.
DOI: 10.1016/0956-716x(90)90219-7
Google Scholar
[10]
C. Wang, G.Q. Liu and X.G. Qin, Simulation study of evolution and quasi-stationary state from two initial grain structures, Acta metallurgica sinica. 39 (2003) 635-638.
Google Scholar
[11]
Chang Soo Park, Tae Wook Na, Hyung Ki Park, Byeong Joo Lee, Chan Hee Han, and Nong Moon Hwang, Three-dimensional Monte Carlo simulation for the effect of precipitates and sub-boundaries on abnormal grain growth, Scripta Materialia. 66 (2012).
DOI: 10.1016/j.scriptamat.2011.11.045
Google Scholar
[12]
Junyoung Park and Yoji Shibutani, Weighted Voronoi tessellation technique for internal structure of metallic glasses, Intermetallics. 15 (2007) 187-192.
DOI: 10.1016/j.intermet.2006.05.005
Google Scholar
[13]
Albert and Schueller, A nearest neighbor sweep circle algorithm for computing discrete Voronoi tessellations, Journal of Mathematical Analysis and Application. 336 (2007) 1018-1025.
DOI: 10.1016/j.jmaa.2007.03.027
Google Scholar
[14]
Mark Gerstein Jerry Tsai and Michael Levitt, The volume of atoms on the protein surface: Calculated from simulation using Voronoi polyhedra, J. Mol. Biol. 249 (1995) 955-966.
DOI: 10.1006/jmbi.1995.0351
Google Scholar
[15]
H.X. Zhu, S.M. Thorpe and A.H. Windle, The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs, International Journal of Solids and Structures. 43 (2006) 1061-1078.
DOI: 10.1016/j.ijsolstr.2005.05.008
Google Scholar
[16]
F.M. Richards, The interpretation of protein structures: total volume, group volume distributions and packing density, J. Mol. Biol. 82 (1974) 1-14.
DOI: 10.1016/0022-2836(74)90570-1
Google Scholar
[17]
X.J. Guan, J.J. Zhou, X.M. Chen, Y. Li and J. Ma, Effect of cold-rolling reduction on recrystallization of extra low-carbon and high strength bake-hardening steel sheet during continuous annealing, Heat Treatment of Metals. 28 (2003) 31-33.
Google Scholar
[18]
X.M. Shen, X.J. Guan, J.X. Zhang, Y.T. Liu, X.F. Ma and X.M. Zhao, Coupling of FEM with Monte Carlo for simulating recrystallization in cold rolling pure aluminum sheet, Chinese Journal of Nonferrous Metals. 17 (2007) 124-130.
Google Scholar