Effects of N Concentration on Electronic Structure and Optical Absorption Properties of N-Doped SrTiO3 from First Principles

Article Preview

Abstract:

The nitrogen concentration effects on electronic structures and optical properties of N-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, a direct band gap is predicted in SrTiO3-xNx. Electronic structure analysis shows that the doping N could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band. When the doping level rises, the energy gap has little further narrowing compared with that at lower doping levels. The calculations of optical properties indicate a possible optimum N-doping level in SrTiO3 with a high photo response for visible light. These conclusions are in agreement with the recent experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

561-568

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Puangpetch,T. Sreethawong,S. Yoshikawa,S. Chavadej. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. Journal of Molecular Catalysis A: Chemical. 287 (1-2) (2008).

DOI: 10.1016/j.molcata.2008.02.027

Google Scholar

[2] J.M. Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutant. Catalysis Today. 53(1999)115-129.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[3] M. Ashokkumar An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energ. 23 (1998)427-438.

DOI: 10.1016/s0360-3199(97)00103-1

Google Scholar

[4] J.Y. Lee, J. Park, and J.H. Cho Appl. Phys. Lett. 87(2005)011904.

Google Scholar

[5] Batzill M, Morales EH, and Diebold U. Phys. Rev. Lett. 96(2006)026103.

Google Scholar

[6] J.S. Wang,Y. Shu, M. Komatsu, Q. Zhang, F. Saito, T. Sato. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry. 165 (1-3) (2004)149-156.

DOI: 10.1016/j.jphotochem.2004.02.022

Google Scholar

[7] U. Sulaeman, Y. Shu, and T. Sato. Solvothermal Synthesis and Photocatalytic Properties of Nitrogen-doped SrTiO3 Nanoparticles. J Nanomater( 2010).

Google Scholar

[8] Y.Y. Mi, S.J. Wang, Y.P. Feng. Effect of nitrogen doping on optical properties and electronic structures of SrTiO3 films. Appl. Phys. Lett. 89 (2006) 231922.

DOI: 10.1063/1.2403181

Google Scholar

[9] L.M. Fang. The Study of the First Principles of N-doped SrTiO3. Journal of Guangdong Education Institute. 29(2009)5.

Google Scholar

[10] Y.R. Zhu, Y.G. Tang, J.H. Yan, Q. Liu. Preparation and Photocatalytic Hydrogen Generation Activity of N itrogen Doped SrTiO3 under Visible Light Irradiation. Journal of Inorganic Materials . 23(2008)3.

DOI: 10.3724/sp.j.1077.2008.00443

Google Scholar

[11] M.D. Segall, et al. First-principles simulation: ideas, illustrations and CASTEP code. J Phys: Condensed Matter . 14(2002) 2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[12] D. Vanderbilt, Phys. ReV. B. 41(1990)7892.

Google Scholar

[13] H.J. Monkhorst, J.D. Pack, Phys. ReV. B. 13 (1976)5188.

Google Scholar

[14] K.S. Yang, Y. Dai, and B.B. Huang. Study of the Nitrogen Concentration Influence on N-Doped TiO2 Anatase from First-Principles Calculations. J. Phys. Chem. C. 111(2007)12086-12090.

DOI: 10.1021/jp067491f

Google Scholar

[15] R. Long, J. Niall. Synergistic Effects on Band Gap-Narrowing in Titania by Codoping from First-Principles Calculations. Chem. Mater. 22 (2010)1616–1623.

DOI: 10.1021/cm903688z

Google Scholar

[16] J.S. Wang, Y. Shu, Masakazu Komatsua, T. Sato. Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst. Journal of the European Ceramic Society. 25(2005) 3207–3212.

DOI: 10.1016/j.jeurceramsoc.2004.07.027

Google Scholar

[17] W. Wei, Y. Dai, M. Guo, L. Yu, Huang and B. B , Density Functional Characterization of the Electronic Structure and Optical Properties of N-Doped, La-Doped, and N/La-Codoped SrTiO3. J. Phys. Chem. C. 113(33) (2009)15046–15050.

DOI: 10.1021/jp902567j

Google Scholar

[18] A. Jia, X. Liang, Z. Su, T. Zhu, S. Liu. Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. J Hazard Mater . 178 (1-3)(2010)233-242.

DOI: 10.1016/j.jhazmat.2010.01.068

Google Scholar

[19] T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A: General 288 (1-2)(2005) 74-79.

DOI: 10.1016/j.apcata.2005.04.035

Google Scholar

[20] J. Wang, H. Li, H. Li, S. Yin, T. Sato, Preparation and photocatalytic activity of visible light-active sulfur and nitrogen co-doped SrTiO3. Solid State Sci. 11 (1)(2009)182-188.

DOI: 10.1016/j.solidstatesciences.2008.04.010

Google Scholar