[1]
T. Puangpetch,T. Sreethawong,S. Yoshikawa,S. Chavadej. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant. Journal of Molecular Catalysis A: Chemical. 287 (1-2) (2008).
DOI: 10.1016/j.molcata.2008.02.027
Google Scholar
[2]
J.M. Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutant. Catalysis Today. 53(1999)115-129.
DOI: 10.1016/s0920-5861(99)00107-8
Google Scholar
[3]
M. Ashokkumar An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energ. 23 (1998)427-438.
DOI: 10.1016/s0360-3199(97)00103-1
Google Scholar
[4]
J.Y. Lee, J. Park, and J.H. Cho Appl. Phys. Lett. 87(2005)011904.
Google Scholar
[5]
Batzill M, Morales EH, and Diebold U. Phys. Rev. Lett. 96(2006)026103.
Google Scholar
[6]
J.S. Wang,Y. Shu, M. Komatsu, Q. Zhang, F. Saito, T. Sato. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry. 165 (1-3) (2004)149-156.
DOI: 10.1016/j.jphotochem.2004.02.022
Google Scholar
[7]
U. Sulaeman, Y. Shu, and T. Sato. Solvothermal Synthesis and Photocatalytic Properties of Nitrogen-doped SrTiO3 Nanoparticles. J Nanomater( 2010).
Google Scholar
[8]
Y.Y. Mi, S.J. Wang, Y.P. Feng. Effect of nitrogen doping on optical properties and electronic structures of SrTiO3 films. Appl. Phys. Lett. 89 (2006) 231922.
DOI: 10.1063/1.2403181
Google Scholar
[9]
L.M. Fang. The Study of the First Principles of N-doped SrTiO3. Journal of Guangdong Education Institute. 29(2009)5.
Google Scholar
[10]
Y.R. Zhu, Y.G. Tang, J.H. Yan, Q. Liu. Preparation and Photocatalytic Hydrogen Generation Activity of N itrogen Doped SrTiO3 under Visible Light Irradiation. Journal of Inorganic Materials . 23(2008)3.
DOI: 10.3724/sp.j.1077.2008.00443
Google Scholar
[11]
M.D. Segall, et al. First-principles simulation: ideas, illustrations and CASTEP code. J Phys: Condensed Matter . 14(2002) 2717.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[12]
D. Vanderbilt, Phys. ReV. B. 41(1990)7892.
Google Scholar
[13]
H.J. Monkhorst, J.D. Pack, Phys. ReV. B. 13 (1976)5188.
Google Scholar
[14]
K.S. Yang, Y. Dai, and B.B. Huang. Study of the Nitrogen Concentration Influence on N-Doped TiO2 Anatase from First-Principles Calculations. J. Phys. Chem. C. 111(2007)12086-12090.
DOI: 10.1021/jp067491f
Google Scholar
[15]
R. Long, J. Niall. Synergistic Effects on Band Gap-Narrowing in Titania by Codoping from First-Principles Calculations. Chem. Mater. 22 (2010)1616–1623.
DOI: 10.1021/cm903688z
Google Scholar
[16]
J.S. Wang, Y. Shu, Masakazu Komatsua, T. Sato. Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst. Journal of the European Ceramic Society. 25(2005) 3207–3212.
DOI: 10.1016/j.jeurceramsoc.2004.07.027
Google Scholar
[17]
W. Wei, Y. Dai, M. Guo, L. Yu, Huang and B. B , Density Functional Characterization of the Electronic Structure and Optical Properties of N-Doped, La-Doped, and N/La-Codoped SrTiO3. J. Phys. Chem. C. 113(33) (2009)15046–15050.
DOI: 10.1021/jp902567j
Google Scholar
[18]
A. Jia, X. Liang, Z. Su, T. Zhu, S. Liu. Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. J Hazard Mater . 178 (1-3)(2010)233-242.
DOI: 10.1016/j.jhazmat.2010.01.068
Google Scholar
[19]
T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A: General 288 (1-2)(2005) 74-79.
DOI: 10.1016/j.apcata.2005.04.035
Google Scholar
[20]
J. Wang, H. Li, H. Li, S. Yin, T. Sato, Preparation and photocatalytic activity of visible light-active sulfur and nitrogen co-doped SrTiO3. Solid State Sci. 11 (1)(2009)182-188.
DOI: 10.1016/j.solidstatesciences.2008.04.010
Google Scholar