Development of Thermodynamic Database of Ti-V-Based Hydrogen Storage Alloys

Article Preview

Abstract:

In this work,Ti-V-based hydrogen storage alloys have been studied because of their high hydrogen absorption/desorption capacities and good activated properties. Experimental data of phase equlibria and thermodynamic assessments of the sub-binary/ternary systems in the Ti-V-based multi-component systems are reviewed in reported literature. Based on the measured phase diagram data and thermochemica information, thermodynamic parameters formulating the Gibbs energies of various phases in some sub-binary/ternary systems of Ti-V-based multi-component alloys are assessed using the CALPHAD method. A set-consistent thermodynamic database of the Ti-V-based multi-component system is developed, which is helpful to study the relations between alloy compositions, microstructure and hydrogen storage properties in order to design novel Ti-V-based hydrogen storage alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

577-582

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Matsuda, Y. Nakamura, E. Akiba, J. Alloys Compd. 509 (2011) 4352-4356.

Google Scholar

[2] J.A. Murshidi, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Int. J. of Hydrogen Energy 36 (2011) 7587-7593.

DOI: 10.1016/j.ijhydene.2011.03.137

Google Scholar

[3] T. Kuriiwa, T. Maruyama, A. Kamegawa, M. Okada, Int. J. Hydrogen Energy 35 (2010) 9082-9087.

Google Scholar

[4] J.H. Yoo, G. Shim, C.N. Park, W.B. Kim, S.W. Cho, Int. J. Hydrogen Energy 34 (2009) 9116-9121.

Google Scholar

[5] Z.M. Hang, X.Z. Xiao, D.Z. Tan, Z.H. He, W.P. Li, S.Q. Li, C.P. Chen, L.X. Chen, Int. J. Hydrogen Energy 35 (2010) 3080-3086.

Google Scholar

[6] Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J J. Alloys Compd. 454 (2008) 427-431.

Google Scholar

[7] A. Dinsdale, CALPHAD 15 (1991) 317–425.

Google Scholar

[8] Y.M. Muggianu, M. Gambino, J.P. Bros, J. Chim. Phys. 72 (1975) 83-88.

Google Scholar

[9] N. Saunders, SSOL database, Thermo-Calc software AB, (1991).

Google Scholar

[10] G. Ghosh, J. Phase Equilibria 23 (2002) 310-327.

Google Scholar

[11] J. Pavlu, J. Vrestal, M. Sob, CALPHAD 34 (2010) 215-221.

Google Scholar

[12] L.Y. Chen, C.H. Li, K. Wang, H.Q. Dong, X.G. Lu, W.Z. Ding, CALPHAD 33 (2009) 658-663.

Google Scholar

[13] M.A. Turchanin, P.G. Agraval, A.R. Abdulov, Powder Metall. Met. Ceram. 47 (2008) 428-446.

DOI: 10.1007/s11106-008-9039-x

Google Scholar

[14] K.C. Hari Kumar,P. Wollants, L. Delaey, CALPHAD 18 (1994) 223-234.

Google Scholar

[15] S. Jonsson, Metall. Trans. B 29 (1998) 361-370.

Google Scholar

[16] L.F.S. Dumitrescu, M. Hillert, J. Phase Equilibria 19 (1998) 441-448.

Google Scholar

[17] H. Bo, Z.P. Jin, Private communication, (2012).

Google Scholar

[18] W.M. Huang, Metall. Trans. A 22 (1991) 1911-(1920).

Google Scholar

[19] W.M. Huang, CALPHAD 15 (1991) 195-208.

Google Scholar

[20] C. Servant, J. Phase Eqiulibria Diffus. 26 (2005) 39-49.

Google Scholar

[21] X.S. Zhao, G.H. Yuan, M.Y. Yao, Q. Yue, J.Y. Shen, CALPHAD 36 (2012) 163-168.

Google Scholar

[22] N.N. Samsonova, P.B. Budberg, Inorganic Materials 1 (1965) 1420-1425.

Google Scholar

[23] P.A. Farrar, H. Margolin, Transaction ASM 60 (1967) 57-66.

Google Scholar