Interfacial Behavior of Micro-Cellular Structural Al90Mn9Ce1/TiO2 Composite Prepared by Spark Plasma Sintering

Article Preview

Abstract:

With micron Al90Mn9Ce1 alloy powder clad by TiO2 nanopowder, a dense closed micro-cellular ceramics structure was fabricated. The alloy composite was filled inside by spark plasma sintering at temperature 793 K, and with the composite density of 98.2%. Micro-temperature area of Al90Mn9Ce1/ TiO2 matrix was simulated through ANSYS, and the macro lower temperature sintering mechanism was analyzed. The microstructure of the interface was investigated via scanning electron microscope, and the composition distribution of the interface was investigated via energy dispersive spectrometry. The formation and evolution of the interfaces were analyzed from plastic deformation, the interface creep, interfacial diffusion and other aspects. It was found that the application of DC pulse current has important effect on interfacial behavior and the performance of composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

589-594

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Grasso, Y. Sakka, G. Maizza, Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008, Sci. Technol. Adv. Mater. 10 (2009) 053001.

DOI: 10.1088/1468-6996/10/5/053001

Google Scholar

[2] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering, Mat. Sci. Eng. R. 63 (2009) 127-287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[3] H. Borodianska, O. Vasylkiv, Y. Sakka, Nanoreactor engineering and spark plasma sintering of Gd20Ce80O1. 90 nanopowders, J. Nanosci. Nanotechno. 8 (2008) 3077-3084.

DOI: 10.1166/jnn.2008.087

Google Scholar

[4] G. Suarez, H. Borodianska, Y. Sakka, E.F. Aglietti, O. Vasylkiv, Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and Spark Plasma Sintering, J. Nanosci. Nanotechnol. 61 (2010) 6634-6640.

DOI: 10.1166/jnn.2010.2645

Google Scholar

[5] R. Chaim, R. Marder-Jaeckel, J.Z. Shen, Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering, Mat. Sci. Eng. A. 429 (2006) 74-78.

DOI: 10.1016/j.msea.2006.04.072

Google Scholar

[6] D.M. Hulbert, A. Anders, J. Anderson, E.J. Lavernia, A.K. Mukherjee, A discussion on the absence of plasma in spark plasma sintering, Scripta Mater. 60 (2009) 835-838.

DOI: 10.1016/j.scriptamat.2008.12.059

Google Scholar

[7] K. Inoue, Electric-discharge sintering, US Patent. (1966) No. 3241956.

Google Scholar

[8] J.F. Gerald, S. Pennycook, H. Gao, R.K. Singh, Synthesis and properties of nanofunctionalized particulate materials, Nanostruct. Mater. 12 (1999) 1167-1171.

DOI: 10.1016/s0965-9773(99)00320-7

Google Scholar

[9] T. Rodriguez-Suareza, J.F. Bartoloméb, A. Smirnov, et al., Electroconductive Alumina-TiC-Ni nanocomposites obtained by Spark Plasma Sintering, Ceram. Int., 37 (2011) 1631-1636.

DOI: 10.1016/j.ceramint.2011.01.033

Google Scholar

[10] M.G. Wang, D. Zhang, S.X. Wang, Z.K. Zhao, Fabrication of porous nanocrystalline TiO2 materials by SPS, J Inorg Organomet Polym. 22 (2012) 17-20.

DOI: 10.1007/s10904-011-9614-3

Google Scholar

[11] E.A. Feest. Interfacial phenomena in metal-matrix composites, Composites Part A. 25 (1994) 75- 86.

DOI: 10.1016/0010-4361(94)90001-9

Google Scholar

[12] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223-315.

Google Scholar

[13] S.B. Sinnott, E.C. Dickey, Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties, Mat Sci Eng R. 43 (2003) 1-59.

DOI: 10.1016/j.mser.2003.09.001

Google Scholar

[14] J.H. Noh, H.S. Jung, J.K. Lee, et al., Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering, J. Eur. Ceram. Soc. 27 (2007) 2937-2940.

DOI: 10.1016/j.jeurceramsoc.2006.11.018

Google Scholar

[15] Z.K. Zhao, K.F. Yao, S.Z. Jin and J.F. Li, Bulk Al90Mn9Ce1 alloy with ultra-high strength prepared by spark plasma sintering, Acta Metall. Sin. 41 (2005) 1298-1302.

Google Scholar

[16] Q. Jiang, J.C. Li, B.Q. Chi, Size-dependent cohesive energy of nanocrystals, Chem. Phys. Lett. 366 (2002) 551-554.

DOI: 10.1016/s0009-2614(02)01641-x

Google Scholar

[17] Q. Jiang, F.G. Shi, Size-dependent initial sintering temperature of ultrafine particles, J. Mater. Sci. Technol. 14 (1998) 171-172.

Google Scholar

[18] Z. Zhang, J.C. Li, Q. Jiang, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 2653-2656.

DOI: 10.1088/0022-3727/33/20/318

Google Scholar

[19] Z. Zhang, X.X. Lu, Q. Jiang. Finite size effect on melting enthalpy and melting entropy of nanocrystals. Physica B. 270 (1999) 249-254.

DOI: 10.1016/s0921-4526(99)00199-4

Google Scholar

[20] E.A. Olevsky, L. Froyen, Impact of thermal diffusion on densification during SPS, J. Am. Ceram. Soc. 92 (2009) 122-132.

DOI: 10.1111/j.1551-2916.2008.02705.x

Google Scholar

[21] M. Nanko, T. Maruyama, and H. Tomino, Neck growth on initial stage of pulsed current pressure sintering for coarse atomized powder made of cast-iron , J. Jpn. Inst. Met. 63 (1997) 917-923.

DOI: 10.2320/jinstmet1952.63.7_917

Google Scholar