A Pseudo-Binary Diagram of the (Bi,Pb)-Sr-Ca-Cu-O System

Article Preview

Abstract:

A pseudo-binary phase diagram of the (Bi,Pb)-Sr-Ca-Cu-O system along the Bi1.6Pb0.4Sr2Can-1CunOx line is constructed. This resulting phase diagram shows three kinds of peritectic reactions, one eutectic reaction and one peritectoid reaction. The equilibrium solid phases in this diagram are the 2201 (n=1), 2212 (n=2), 2223 (n=3) and (Sr,Ca)CuO2 (n→∝) phases. The 2201 phase is solid solution which is stable at 1≤n≤1.2. The eutectic composition point is close to the maximum solid solution composition of the 2201 phase. The temperature interval between the peritectic reaction of L + (Sr,Ca)2CuO3 + (Sr,Ca)CuO2 → 2212 and the eutectic reaction of L → 2201 + 2212 is only about 3°C. For the composition of n=3, CaO and the liquid phase are stable at temperatures above 940°C. During the cooling, these two phases react peritectically to (Sr,Ca)2CuO3. At around 890°C, (Sr,Ca)2CuO3 reacts with the liquid to produce (Sr,Ca)CuO2. At around 865°C, (Sr,Ca)2CuO3 and (Sr,Ca)CuO2 react with the liquid to produce the 2212. The 2223 phase is transformed by a peritectoid reaction of the 2212 phase and residual (Sr,Ca)2CuO3, (Sr,Ca)CuO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-187

Citation:

Online since:

March 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Meada, Y. Tanaka, M. Fukutomi and T. Asano: Japan. J. Appl. Phys. 27 (1988), p.209.

Google Scholar

[2] R. S. Roth, C. J. Rawn, B. P. Burton and F. Beech: M.A. Green: J. Res. Nat. Inst. Stand. Technol. 95 (3) (1990), p.291.

Google Scholar

[3] K. Schulze, P. Majewski, B. Hettich and G. Petzow: Z. Metallk. 81 (1990), p.836.

Google Scholar

[4] Y. Ikeda, H. Ito, S. Shimomura, Y. Oue, K. Inaba, Z. Hiroi and M. Takano: Physica C 159 (1989), p.93.

DOI: 10.1016/0921-4534(89)90109-3

Google Scholar

[5] C. J. Rawn, R. S. Roth, B. P. Burton and M. D. Hill: J. Am. Ceram. Soc. 77 (1994), p.2173.

Google Scholar

[6] J.C. Toledano, D. Morina, J. Schnecka, H. Faqirc, O. Monnereauc, G. Vacquierc, P. Strobeld, V. Barnole: Physica C 253 (1995), p.53.

Google Scholar

[7] M. Neviva, K. Knizek and E. Pollert: Physica C 235-240 (1994), p.327.

Google Scholar

[8] P. Strobel, J. C. Toledano, D. Morin, J. Schneck, G. Vacquier, O. Monnereau, J. Primot and T. Fournier: Physica C 201 (1992), p.27.

DOI: 10.1016/0921-4534(92)90100-q

Google Scholar

[9] P. Strobel and T. Fournier: J. Less-Common Met. 164-165 (1990), p.519.

Google Scholar

[10] X. Y. Lu, A. Nagata, K. Sugawara and S. Kamada: Physica C 354/1-4 (2001), p.313.

Google Scholar

[11] X. Y. Lu, A. Nagata and K. Sugawara : Physica C 468 (2008), p.468.

Google Scholar