In Situ X-Ray Diffraction Study of Thermal Stability of Cu and Cu-Zr Samples Processed by ECAP

Article Preview

Abstract:

X-ray diffraction (XRD) studies of ECAP (equal-channel angular pressing) materials were performed after annealing and by in-situ measurements in XRD high-temperature chamber for samples prepared by different number of passes and number of revolutions, respectively. Main attention was given to Cu and Cu-Zr samples. Significant dependence on number of passes was found for ECAP samples. In-situ measurements were focused not only on temperature dependence but also on time evolution of the diffraction line profiles. Evaluation in terms of dislocation densities, correlation and crystallite size and its distribution was performed by our own software MSTRUCT developed for total powder diffraction pattern fitting. Abnormal growth of some grains with annealing is well-known for copper and leads to the creation of bimodal microstructure. Therefore a special care must be given to the evaluation and a model of two Cu components (larger and smaller crystallites) was fitted to the data if an indication of some crystallite growth appears either in the XRD line profile shape or in two-dimensional diffraction patterns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, and I. V. Alexandrov: Prog. Mater. Sci., vol. 45 (2000), p.103–89.

Google Scholar

[2] T. C. Lowe and R. Z. Valiev, eds., Investigations and Applications of Severe Plastic Deformation, Kluwer, Dordrecht, The Netherlands, 2000.

Google Scholar

[3] F. H. Dalla Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies, and E.V. Pereloma: Acta Mater., vol. 52 (2004), p.4819–32.

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[4] N. Lugo, N. Llorca, J. J. Sunol and J. M. Cabrera: J. Mater. Sci. vol 45 (2010) pp.2264-2273.

Google Scholar

[5] Oscar Fabian Higuera, Pablo Rodriguez Calvillo and Jose Maria Cabrera, AIP Conf. Proc. 1353 (2011) pp.553-558.

Google Scholar

[6] W. Q. Cao, C. F. Gu. E. V. Pereloma and C. H. J. Davies, Mat. Sci. Eng. A492 (2008) 74-79.

Google Scholar

[7] Honggang Jiang, Y. Theodore Zhu, Darryl P. Butt, Igor V. Alexandrov and Terry C. Lowe, Mat. Sci. Eng. A290 (2000) 128-138.

Google Scholar

[8] R. K. Islamgaliev, F. Chmelík, R. Kužel, Mat. Sci. Eng. A234-236 (1997) 335-338.

Google Scholar

[9] R. K. Islamgaliev, F. Chmelík, R. Kužel, Mat. Sci. Eng. A237 (1997) 43-51.

Google Scholar

[10] J. Čížek, I. Procházka, M. Cieslar, R. Kužel, J. Kuriplach, F. Chmelík, I. Stulíková, F. Bečvář, O. Melikhova, R.K. Islamgaliev, Physical Review B 65: (9) (2002) art. no.-094106.

DOI: 10.1103/physrevb.65.094106

Google Scholar

[11] J. Čížek, I. Procházka,  R. Kužel, M. Cieslar, and R. K. Islamgaliev, Journal of Metastable and Nanocrystalline Materials 17 (2003) 37-44.

DOI: 10.4028/www.scientific.net/jmnm.17.37

Google Scholar

[12] J. Gubicza, N. G. Chinh, S. V. Dobatkin, E. Khosravi, T. G. Langdon, Key Engineering Materials vol. 465 (2011) pp.195-198.

DOI: 10.4028/www.scientific.net/kem.465.195

Google Scholar

[13] R. Kužel, M. Janeček, Z. Matěj, J. Čížek, M. Dopita and O. Srba, Metallurgical and Materials Transactions A, vol. 41A (2010) pp.1174-1190.

DOI: 10.1007/s11661-009-9895-0

Google Scholar

[14] J. Čížek, M. Janeček, O. Srba, R. Kužel, Z. Barnovská, I. Procházka, S. Dobatkin, Acta Materialia, 59 (2011) 2322-2329.

DOI: 10.1016/j.actamat.2010.12.028

Google Scholar

[15] M. Janeček, B. Hadzima, R.J. Hellmig, and Y. Estrin: Metallic Mater, vol. 43A (2005) p.258–71.

Google Scholar

[16] Z. Matěj, R. Kužel, L. Nichtová, Powder Diffraction, v. 25 (2010) 125-131.

Google Scholar

[17] R. Kužel, L. Nichtová, Z. Matěj, J. Musil, Thin Solid Films 519 (2010) 1649-1654.

DOI: 10.1016/j.tsf.2010.08.122

Google Scholar