Effect of Austenite Recrystallization on Toughness of Pipeline Steels

Article Preview

Abstract:

The factors affecting pipeline fractures are reviewed briefly, with particular emphasis on the influence of the {100} texture component. The deformation texture components introduced by rolling in the austenite temperature range are introduced, together with the component changes associated with recrystallization. The effect of the γ-to-α phase transformation on the austenite deformation and recrystallization texture components is described. The changes to the texture brought about by rolling in the ferrite (or in the intercritical) phase field are also outlined. The controlled rolling parameters that promote minimization of the texture intensity of the deleterious {100} component are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

546-553

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Pyshmintsev, A. Gervasyev, R. H. Petrov, V. C. Olalla, L. Kestens, Crystallographic texture as a factor enabling ductile fracture arrest in high strength pipeline steel, Materials Science Forum 702-703 (2012) 770-773.

DOI: 10.4028/www.scientific.net/msf.702-703.770

Google Scholar

[2] G. Demofonti, G. Mannucci, C. M. Spinelly, L. Barsanti, H. G. Hillenbrand, Large diameter X100 gas linepipes: fracture propagation evaluation by full-scale burst test, Europipe. 1-12.

Google Scholar

[3] G. Buzzichelli, L. Scopesi, Fracture propagation control in very high strength gas pipelines, ATS International Steelmaking Conference, Paris, December 8-9, 1999, 1409-1416.

DOI: 10.1051/metal:2000119

Google Scholar

[4] G. Baldi, G. Buzzichelli, Critical stress for delamination fracture in HSLA steels, Metal Science (1978) 459-472.

DOI: 10.1179/030634578790433332

Google Scholar

[5] L. Yang, L. Guanfa, Z. Lixia, F. Yaorong, H. Chunyong, H. Xiaodong, H. Xinli, Effect of micro-texture on fracture separation in an X80 line pipe steel, Proc. of X80 and HGLPS 2008, Xi'an, China.

DOI: 10.1115/ipc2008-64198

Google Scholar

[6] J. J. Jonas, Y. He, S. Godet, Transformation textures in as-hot rolled TRIP steels, Steel Res. Int. 77 (2006) 650-653.

DOI: 10.1002/srin.200606443

Google Scholar

[7] R. K. Ray, J. J. Jonas, Transformation textures in steels, Int. Mater. Reviews 35 (1990) 1-36.

Google Scholar

[8] R. K. Ray, M. P. Butrón-Guillén, J. J. Jonas, G. E. Ruddle, Effect of controlled rolling on texture development in a plain carbon and a Nb microalloyed steel, ISIJ Int. 32 (1992) 203-212.

DOI: 10.2355/isijinternational.32.203

Google Scholar

[9] J. J. Jonas, R. Petrov, L. Kestens, Transformation behaviors of intercritically annealed and as-hot rolled TRIP steels, Proc. 2nd Baosteel Biennial Academic Conf: X. Qihua, X. Lejiang (Eds.), Baosteel Research Institute, Shanghai, China, 1 (2006) 319-325.

Google Scholar

[10] L. Kestens, J. J. Jonas, Transformation and recrystallization textures associated with steel processing, ASM Handbook, Metalworking: Bulk Forming 14A (2005) 685-700.

DOI: 10.31399/asm.hb.v14a.a0004029

Google Scholar

[11] Y. He, S. Godet, P. J. Jacques, J. J. Jonas, Crystallographic features of the γ-to-α transformation in a Nb-added transformation-induced plasticity steel, Metall. and Mater. Trans. A 37 (2006) 2641-2653.

DOI: 10.1007/bf02586099

Google Scholar

[12] R. K. Ray, J. J. Jonas, R. E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, Int. Mater. Reviews 39 (1994) 129-172.

DOI: 10.1179/imr.1994.39.4.129

Google Scholar