Study on Cyclic Strain Localization and Fatigue Fracture Mechanism in High Manganese Twinning-Induced Plasticity Steels

Article Preview

Abstract:

The fatigue cracking mechanisms of two high Mn TWinning-Induced Plasticity (TWIP) steels are investigated in detail using electron channelling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). Furthermore, the fracture surfaces of the fatigued steels have been studied by employing a field emission gun scanning electron microscope (FEG-SEM). The fine details of the fatigued surface topography are verified using an atomic force microscope (AFM). The results indicate that the fatigue crack embryos nucleate at an early stage of the fatigue life as a result of local straining at grain and annealing twin boundaries at sites, where persistent slip bands create dislocation piled-ups that impinge on boundaries. The EBSD measurements showed that unlike in monotonic straining, the formation of deformation twins is not observed under cyclic straining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

411-417

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Cornette, P. Cugy, A. Hildenbrand, M. Bouzekri and G. Lovato: Revue Métall. Vol. 102 (2005), p.905

DOI: 10.1051/metal:2005151

Google Scholar

[2] C. Scott, S. Allain, M. Faral and N. Guelton: Revue Métall. Vol. 103 (2006), p.293

Google Scholar

[3] A. S. Hamada, Manufacturing, mechanical properties and corrosion behavior of high-Mn TWIP steels, PhD Thesis, University of Oulu, Acta Univ. Oul. C 281, (2007)

Google Scholar

[4] A. Saeed-Akbari, L. Mosecker, A. Schwedt and W. Bleck: Metall. Mater. Trans. A Vol. 43A (2012), p.1688

Google Scholar

[5] L. Chen, Han-soo Kim, Sung-Kyu Kim and B.C. De-Cooman: ISIJ Int. Vol. 47 (2007), p.1804

Google Scholar

[6] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci. Vol. 15 (2011) , p.141

Google Scholar

[7] A.S. Hamada, L.P. Karjalainen and J. Puustinen: Mater. Sci. Eng. A Vol. 517 (2009), p.68

Google Scholar

[8] A.S. Hamada and L.P. Karjalainen: Mater. Sci. Eng. A Vol. 527 (2010), p.5715

Google Scholar

[9] L.P. Karjalainen, A. Hamada, R. D.K. Misra and D.A. Porter: Scripta Mater. Vol. 66 (2012), p.1034

Google Scholar

[10] T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard and A. Frehn: Mater. Sci. Eng. A Vol. 527 (2010), p.2412

DOI: 10.1016/j.msea.2009.12.012

Google Scholar

[11] T. Niendorf, C. Lotze, D. Canadin, A. Frehn and H.J. Maier: Mater. Sci. Eng. A Vol. 499 (2009), p.518

Google Scholar

[12] J. Man, T. Vystavel, A. Weidner, I. Kubena, M. Petrenec, T. Kruml and J. Polák: Int. J. Fatigue Vol. 39 (2012), p.44

Google Scholar

[13] D. Barbier, N. Gey, S. Allain, N. Bozzolo and M. Humbert: Mater. Sci. Eng. A Vol. 500 (2009), p.196

Google Scholar

[14] J. Man, K. Obrtlík and J. Polák: Phil. Mag. Vol. 89 (2009), p.1295

Google Scholar

[15] Z.F. Zhang and Z.G. Wang: Prog. Mater. Sci. Vol. 53 (2008), p.1025

Google Scholar

[16] Y. Nakai: Mater. Sci. Res. Int. Vol. 7 (2001), p.73

Google Scholar

[17] S. Suresh, Fatigue of Materials, second ed., Cambridge University Press, UK, (2001)

Google Scholar

[18] P. Zhang, Z.J. Zhang, L.L. Li and Z.F. Zhang: Scripta Mater. Vol. 66 (2012), p.854

Google Scholar

[19] X.G. Wang, V. Crupi, X.L. Guo and Y.G. Zhao: Int. J. Fatigue Vol. 32 (2010), p. (1970)

Google Scholar

[20] A. Dumay, J.-P. Chateau, S. Allain, S. Migot and O. Bouaziz: Mater. Sci. Eng. A Vo. 483–484 (2008), p.184

Google Scholar

[21] S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot and N. Guelton: Mater. Sci. Eng. Vol. A 387–389 (2004), p.158.

Google Scholar