The Effect of Bonding Flaws on the Splitting Process in the Smart-Cut Technology

Article Preview

Abstract:

Smart-Cut® is an innovative and highly efficient technology to fabricate high quality Silicon-on-Insulator (SOI) wafers, especially when the top film of SOI wafers is very thin. In the present paper, a fracture mechanics model is established to examine the effect of bonding flaws on defect growth in the Smart-Cut process. It is found that although defect growth can occur in a practical Smart-Cut process, large bonding flaws are inclined resulting in severe deviation of the direction of defect propagation, leading to a non-transferred area of thin film when splitting. Moreover, at the expense of low defect growth, increasing the internal pressure of bonding flaws decreases the defect growth deviation and thus benefits to improve the quality of final SOI wafer. The mechanism of relaxation of stiffener constraint is proposed to clarify the effect of bonding flaws. Finally, progress of the splitting process is analyzed when bonding flaws are present.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

437-444

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bruel: Electron. Lett. Vol. 31 (1995), p.1201

Google Scholar

[2] B. Aspar, M. Bruel, H. Moriceau, C. Maleville, T. Pouneyrol, A.M. Papon: Microelectron. Eng. Vol. 36 (1997), p.233

Google Scholar

[3] B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe: J. Electron. Mater. Vol. 30 (2001), p.834

Google Scholar

[4] M.K. Weldon, M. Collot, Y.J. Chabal, V.C. Venezia, A. Agarwal, D.J. Eaglesham, S.B. Christman: Appl. Phys. Lett. Vol. 73 (1998), p.3721

DOI: 10.1063/1.122875

Google Scholar

[5] Q.Y. Tong, R. Scholz, U. Gosele, T.H. Lee, L.J. Huang, Y.L. Chao, T.Y. Tan: Appl. Phys. Lett. Vol. 72 (1998), p.49

Google Scholar

[6] T. Hochbauer, A. Misra, M. Nastasi, J.W. Mayer: J. Appl. Phys. Vol. 89 (2001), p.5980

Google Scholar

[7] Y. Zheng, S.S. Lau, T. Hochbauer, A. Misra, R.D. Verda, J.W. Mayer: J. Appl. Phys. Vol. 89 (2001), p.2972

Google Scholar

[8] L. Di Ciocco, F. Letertre, Y. Le Tiec, A.M. Papon, C. Jaussaud, M. Bruel: Mater. Sci. Eng. B Vol. 46 (1997), p.349

DOI: 10.1016/s0921-5107(96)02004-1

Google Scholar

[9] B. Aspar, M. Bruel, M. Zussy, A.M. Cartier: Electron. Lett. Vol. 32 (1996), p. (1985)

Google Scholar

[10] L.B. Freund: Appl. Phys. Lett. Vol. 70 (1997), p.3519

Google Scholar

[11] X.Q. Feng, Y. Huang: Int. J. Solids. Struct. Vol. 41 (2004), p.4299

Google Scholar

[12] B. Gu, H.Y. Liu, Y.W. Mai, X.Q. Feng, S.W. Yu: Adv. Mater. Res. Vol. 33-37 (2008), p.67

Google Scholar

[13] M. Bruel: Nucl. Instrum. Meth. B Vol. 108 (1996), p.313

Google Scholar

[14] C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, T. Barge: Mater. Sci. Eng. B Vol. 46 (1997), p.14

Google Scholar

[15] S. Bengtesson: International Conference on Solid-State and Integrated Circuit Technology Proceedings, Oct 21-23, Beijing, China, (1998), p.745

Google Scholar

[16] E.E. Gdoutos: Problems of Mixed-Mode Crack Propagation (Kluwer, Boston 1984).

Google Scholar