[1]
P.J. Haagensen, S.J. Maddox, IIW Recommendations on post weld improvement of steel and aluminium structures, XIII-2200r4-07, revised February (2010).
Google Scholar
[2]
H. Wohlfahrt, The new techniques for performance improvement of dynamically loaded welded structures, IIW-International Conference, July 13-19, 1997, San Francisco.
Google Scholar
[3]
K.J. Kirkhope, R. Bell, L. Caron, R.I. Basu, K.T. Ma, Weld detail fatigue life improvement techniques, Part 1: Review, Marine Structures 12 (1999) 447-474.
DOI: 10.1016/s0951-8339(99)00013-1
Google Scholar
[4]
M. Farajian, Z. Barsoum, I. Weich, Th. Nitschke-Pagel, A Literature Survey on Residual Stress Related Fatigue Strength Improvement Techniques for Welded Components and Structures, XIII – WG6 - 008 – 12, International Institute of Welding, (2012).
Google Scholar
[5]
A. Kromm, T. Kannengiesser, J. Altenkirch, J. Gibmeier, Residual Stresses in Multilayer Welds with Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction, Mater. Sci. Forum 681 (2011) 37-42.
DOI: 10.4028/www.scientific.net/msf.681.37
Google Scholar
[6]
H. Wohlfahrt, Die Bedeutung der Austenitumwandlung für die Eigenspannungsentstehung beim Schweißen, Härterei Technische Mitteilungen 41 (1986) 248-257.
DOI: 10.1515/htm-1986-410507
Google Scholar
[7]
M. Farajian, Th. Nitschke-Pagel, R.C. Wimpory, M. Hofmann, M. Klaus, Residual Stress Field Measurements in Welds by Means of X-ray, Synchrotron and Neutron Diffraction, Journal of Materials Science and Engineering Technology 42(11) (2011).
DOI: 10.1002/mawe.201100782
Google Scholar
[8]
J. Gerald, A. Bignonnet, Y. Papadpoulos, Corrosion fatigue test on high strength steel tubular X nodes with improved welds, Proc. 3rd Int. Conf. on Steel in Marine Structures (SIMS 87), 1987, pp.455-463.
Google Scholar
[9]
H. Wohlfahrt, J. Heeschen, Possibilities for Improvement of Fatigue Strength of Butt Welded Joints of High Strength Struc. Steel, Fatigue of Engrg. Mater. and Struc. Vol. II, (1986).
Google Scholar
[10]
B. Scholtes, E. Macherauch, Z. Metallkunde 77 (1986) 18.
Google Scholar
[11]
H. Wohlfahrt, Schweißeigenspannungen, Härterei-Technische Mitteilungen, Jahrgang 31 (1976) 56-71.
Google Scholar
[12]
V. Hauk, Structural and Residual Stress Analysis by Non-destructive Methods, Elsevier, (1997).
Google Scholar
[13]
I.C. Noyan, J.B. Cohen, Residual Stress Measurements by Diffraction and Interpretation, Material Research and Engineering, Springer-Verlag, (1987).
Google Scholar
[14]
E.J. Mittemeijer, U. Welzel, Modern Diffraction Methods, Wiley-VCH Verlag GmbH & Co. KGaA, (2012).
Google Scholar
[15]
Z. Barsoum, Fatigue design of welded structures-some aspects of weld quality and residual stresses, International Journal of Materials Joining, Welding in the World, No. 11/12, Vol. 55, (2011).
DOI: 10.1007/bf03321537
Google Scholar
[16]
A. Hobbacher, Recommendations for Fatigue Design of Welded Joints and Components, IIW-Document, XIII-2151-07 / XV-1254-07, (2007).
DOI: 10.1007/978-3-319-23757-2_8
Google Scholar
[17]
E. Macherauch, H. Wohlfahrt, Residual Stress and Fatigue, Fatigue Behavior of Metals, DGM Informationsgesellschaft Verlag, Oberursel , 1985 (in German).
Google Scholar
[18]
F.K. Chang, Structural Health Monitoring 2000, Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford University, Sept. 8-10, (1999).
DOI: 10.21236/ada384380
Google Scholar
[19]
E. Macherauch, P. Mueller, The sin2ψ method for X-ray stress determination, Z. Angew. Phys. 13 (1961) 305-312.
Google Scholar