Modeling and Measurement of Residual Stresses along the Process Chain of Autofrettaged Components by Using FEA and Hole-Drilling Method with ESPI

Article Preview

Abstract:

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

79-86

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Seeger, M. Schön, J.W. Bergmann, M. Vormwald, Autofrettage I – Dauerfestigkeits-steigerung durch Autofrettage, Forschungsvereinigung Verbrennungskraftmaschinen e.V. (1993).

Google Scholar

[2] E. Brinksmeier, J.T. Cammet, W. König, P. Leskovar, J. Peters, H.K. Tönshoff, Residual stresses: measurement and causes in machining processes, Annals of the CIRP 31/2 (1982) 491-509.

DOI: 10.1016/s0007-8506(07)60172-3

Google Scholar

[3] E. Macherauch, V. Hauk, Eigenspannungen – Entstehung, Messung, Bewertung, DGM Oberursel, (1983).

Google Scholar

[4] B. Scholtes, Eigenspannungen in mechanisch randschicht-verformten Werkstoffzuständen – Ursachen, Ermittlung und Bewertung, Habilitation, DGM, (1991).

DOI: 10.1002/mawe.19910221203

Google Scholar

[5] D. Bähre, H. Brünnet, Simulation of removing Autofrettage-induced residual stress loaded layers by finite element analysis, Procedia Engineering 19 (2011) 9-15.

DOI: 10.1016/j.proeng.2011.11.072

Google Scholar

[6] H. Brünnet, I. Yi, D. Bähre, Modeling of residual stresses and shape deviations along the process chain of Autofrettaged components, Journal of Materials Science and Engineering A 1/7A (2011) 915-936.

DOI: 10.4028/www.scientific.net/msf.768-769.79

Google Scholar

[7] P.V. Grant, J.D. Lord, P.S. Whitehead, Measurement good practice guide No. 53 – The measurement of residual stresses by the incremental hole-drilling technique, National Physics Laboratory, UK, (2002).

Google Scholar

[8] T. Rickert, R. Fix and L. Suominen, Comparison of Residual Stress Measurements Using X-Ray Diffraction and PRISM - Electronic Speckle Pattern Interferometry and Hole-Drilling, SAE Technical Paper (2007) 2007-01-0804.

DOI: 10.4271/2007-01-0804

Google Scholar

[9] D.P. Kendall, A short history of high pressure technology from Bridgman to Division 3, J. Pressure Vessel Techn. 122 (2000) 229-233.

DOI: 10.1115/1.556178

Google Scholar

[10] M. Lechmann, Entwicklung eines schwingbruchmechanischen Auslegungskonzepts für innendruckbeanspruchte Bauteile mit ausgeprägten Druckeigenspannungsfeldern, PhD Thesis, Stuttgart University, (2007).

Google Scholar

[11] V. Läpple, Behälter unter Innen- und Außendruck, in: V. Läpple, Einführung in die Festigkeitslehre, 2nd edn, Vieweg + Teubner Verlag, Wiesbaden, 2008, pp.207-244.

DOI: 10.1007/978-3-8348-8281-3_12

Google Scholar

[12] U. Fischer, Tabellenbuch Metall, Verlag Europa Lehrmittel, Haan-Gruiten, (2005).

Google Scholar

[13] American Society of Mechanical Engineers, Boiler and Pressure Vessel Code - Section VIII, Division 3: Alternative Rules for construction of high pressure vessels, Article KD-5, (2010).

DOI: 10.1115/1.859872.ch23

Google Scholar

[14] X.P. Huang, A general autofrettage model of a thick-walled cylinder based on tensile-compressive stress-strain curve of a material, J. Strain Analysis 40/6 (2005) 599-607.

DOI: 10.1243/030932405x16070

Google Scholar