Influence of Vibration Time and Frequency on Surface Finishing Using Vibration-Assisted Micro-Forging

Article Preview

Abstract:

Vibration-assisted micro-forging was proposed for metal foil surface finishing. The mechanism was investigated by analysis of strain, surface roughness, microhardness, real / nominal contact area ratio and forming work at different vibration time and frequencies. Results show that vibration time and frequency influence the surface deformation by means of real contact area and forming work accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

687-693

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.N, Market Analysis for Microsystems 1996–2002, NEXUS Task.

Google Scholar

[2] F. Vollertsen, Z.Y. Hu, H. S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2004) 70-79.

DOI: 10.1016/j.jmatprotec.2004.04.266

Google Scholar

[3] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming. 51st General Assembly of CIRP, Nancy 50 (2) (2001) 445-462.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[4] Y. Qin, Micro-forming and miniature manufacturing systems - development needs and perspectives, Journal of Materials Processing Technology 177 (2006) 8-18.

DOI: 10.1016/j.jmatprotec.2006.03.212

Google Scholar

[5] D.E. Brehl, T.A. Dow, Review of vibration-assisted machining, Precision Engineering 32 (2008) 153-172.

DOI: 10.1016/j.precisioneng.2007.08.003

Google Scholar

[6] S. S. F. Chang, G. M. Bone, Thrust force model for vibration-assisted drilling of aluminum 6061-T6, International Journal of Machine Tools & Manufacture 49 (2009) 1070-1076.

DOI: 10.1016/j.ijmachtools.2009.07.011

Google Scholar

[7] Y. Bai, K. Nishikawa, M. Yang, Metal Surface Modification with Vibration-Aided Micro-Forging, Materials Transactions 53 (2012) 489-494.

DOI: 10.2320/matertrans.m2011254

Google Scholar

[8] M. Pau, Estimation of real contact area in a wheel-rail system by means of ultrasonic waves, Tribology International 36 (2003) 687-690.

DOI: 10.1016/s0301-679x(03)00014-8

Google Scholar

[9] I. Nitta, Measurements of real contact areas using PET films (thickness, 0.9 μm), Wear 181-183 (1995) 844-849.

DOI: 10.1016/0043-1648(94)07091-1

Google Scholar

[10] M. Eguchi, T. Shibamiya, T. Yamamoto, Measurement of real contact area and analysis of stick/slip region, Tribology International 42 (2009) 1781-1791.

DOI: 10.1016/j.triboint.2009.04.046

Google Scholar

[11] B. Buchner, M. Buchner, B. Buchmayr, Determination of the real contact area for numerical simulation, Tribology International 42 (2009) 897-901.

DOI: 10.1016/j.triboint.2008.12.009

Google Scholar