In Situ Three-Dimensional Orientation Mapping in Plastically-Deformed Polycrystalline Iron by Three-Dimensional X-Ray Diffraction

Article Preview

Abstract:

In situ three-dimensional crystallographic orientation mapping in plastically-deformed polycrystalline iron is demonstrated using a modified three-dimensional x-ray diffraction method. This voxel-by-voxel measurement method enables the observation of intragranular orientation distribution. The experiment is performed using coarse-grained ferrite with a mean grain size of ~ 60 μm and an incident x-ray beam with a beam size of 20 μm × 20 μm. Grains averagely rotate approximately toward the <110> preferred orientation of body-centered cubic uniaxial tensile texture. Intragranular orientation distributions are spread as the tensile strain increases to 10.7 %. Furthermore, intragranular multidirectional rotations are observed in grains near the <100> and <111> corners in the inverse pole figure.

You might also be interested in these eBooks

Info:

[1] H. F. Poulsen, An introduction to three-dimensional x-ray diffraction microscopy, J. Appl. Cryst. 45 (2012) 1084-1097.

DOI: 10.1107/s0021889812039143

Google Scholar

[2] L. Margulies, G. Winther and H. F. Poulsen, In situ measurement of grain rotation during deformation of polycrystals, Science 291 (2001) 2392-2394.

DOI: 10.1126/science.1057956

Google Scholar

[3] H. F. Poulsen, L. Margulies, S. Schmidt and G. Winther, Lattice rotations of individual bulk grains part I: 3D x-ray characterization, Acta Mater. 51 (2003) 3821-3830.

DOI: 10.1016/s1359-6454(03)00206-4

Google Scholar

[4] G. Winther, L. Margulies, S. Schmidt and H. F. Poulsen, Lattice rotations of individual bulk grains part II: correlation with initial orientation and model comparison, Acta Mater. 52 (2004) 2863-2872.

DOI: 10.1016/j.actamat.2004.02.045

Google Scholar

[5] J. Oddershede, J. P. Wright, L. Margulies, X. Huang, H. F. Poulsen, S. Schmidt and G. Winther, 3DXRD measurements of lattice rotations in tensile deformed IF steel, Proceedings of the 31st Risø International Symposium on Materials Science (2010) 369-374.

Google Scholar

[6] J. Oddershede, S. Schmidt, H. F. Poulsen, L. Margulies, J. P. Wright, M. Moscicki, W. Reimers and G. Winther, Grain-resolved elastic strains in deformed copper measured by three-dimensional x-ray diffraction, Mater. Charact. 62 (2011) 651-660.

DOI: 10.1016/j.matchar.2011.04.020

Google Scholar

[7] S. F. Li, J. Lind, C. M. Hefferan, R. Pokharel, U. Lienert, A. D. Rollett and R. M. Suter, Threedimensional plastic response in polycrystalline copper via near-field high-energy x-ray diffraction microscopy, J. Appl. Cryst. 45 (2012) 1098-1108.

DOI: 10.1107/s0021889812039519

Google Scholar

[8] T. Nonaka, K. Dohmae, T. Araki, Y. Hayashi, Y. Hirose, T. Uruga, H. Yamazaki, T. Mochizuki, H. Tanida and S. Goto, Quick-scanning x-ray absorption spectroscopy system with a servo-motordriven channel-cut monochromator with a temporal resolution of 10 ms, Rev. Sci. Instrum. 83 (2012) 083112.

DOI: 10.1063/1.4746770

Google Scholar

[9] Information on http://sourceforge.net/apps/trac/fable/wiki/imaged11

Google Scholar

[10] H. O. Sørensen, S. Schmidt, J. P. Wright, G. B. M. Vaughan, S. Techert, E. F. Garman, J. Oddershede, J. Davaasambu, K. S. Paithankar, C. Gundlach and H. F. Poulsen, Multigrain crystallography, Z. Kristallogr. 227 (2012) 63-78.

DOI: 10.1524/zkri.2012.1438

Google Scholar

[11] Information on http://sourceforge.net/apps/trac/fable/wiki

Google Scholar

[12] Y. Hayashi and Y. Hirose: to be submitted.

Google Scholar

[13] D. Setoyama, Y. Hayashi and N. Iwata, Crystal plasticity finite element analysis based on crystal orientation mapping with three-dimensional x-ray diffraction microscopy: submitted to Materials Science Forum (2013).

DOI: 10.4028/www.scientific.net/msf.777.142

Google Scholar