Demonstration of near Field High Energy X-Ray Diffraction Microscopy on High-Z Ceramic Nuclear Fuel Material

Article Preview

Abstract:

Near-field high energy x-ray diffraction microscopy (nf-HEDM) and high energy x-ray micro-tomography (μT) have been utilized to characterize the pore structure and grain morphology in sintered ceramic UO2 nuclear fuel material. μT successfully images pores to 2-3μm diameters and is analyzed to produce a pore size distribution. It is apparent that the largest number of pores and pore volume in the sintered ceramic are below the current resolution of the technique, which might be more appropriate to image cracks in the same ceramics. Grain orientation maps of slices determined by nf-HEDM at 25 μm intervals are presented and analyzed in terms of grain boundary misorientation angle. The benefit of these two techniques is that they are non-destructive and thus could be performed before and after processes (such as time at temperature or in-reactor) or even in-situ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-117

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.C. Hobson, R. Taylor, Ainscoug.Jb, Journal of Physics D-Applied Physics, 7 (1974) 1003.

Google Scholar

[2] J.R. Macewan, R.L. Stoute, M.J.F. Notley, J Nuc Matl, 24 (1967) 109-&.

Google Scholar

[3] C.T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, F. Sontheimer, J Nuc Matl, 350 (2006) 19-39.

Google Scholar

[4] L.C. Michels, R.B. Poeppel, J. App. Phys., 44 (1973) 1003-1009.

Google Scholar

[5] W.E. Baily, C.N. Spalaris, D.W. Sandusky, E.I. Zebroski, Ceramic Nuclear Fuels, in: O.L. Kruger (Ed.), Ceramic Soc., Columbus, Oh, 1969.

Google Scholar

[6] P.F. Sens, J Nuc Matl, 43 (1972) 293-&.

Google Scholar

[7] H. Kawamata, H. Kaneko, H. Furuya, M. Koizumi, J Nuc Matl, 68 (1977) 48-53.

Google Scholar

[8] R.N. Singh, J Nuc Matl, 64 (1977) 174-178.

Google Scholar

[9] U. Lienert, S.F. Li, C.M. Hefferan, J. Lind, R.M. Suter, J.V. Bernier, N.R. Barton, M.C. Brandes, M.J. Mills, M.P. Miller, B. Jakobsen, W. Pantleon, JOM, 63 (2011) 70-77.

DOI: 10.1007/s11837-011-0116-0

Google Scholar

[10] H.F. Poulson, Three-Dimensional X-ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004.

Google Scholar

[11] R.M. Suter, D. Hennessy, C. Xiao, U. Lienert, Rev. Sci. Instrum., 77 (2006).

Google Scholar

[12] S.F. Li, R.M. Suter, J. App. Crys., 46 (2013) 512-524.

Google Scholar

[13] C.M. Hefferan, J. Lind, S.F. Li, U. Lienert, A.D. Rollett, R.M. Suter, Acta. Mat., 60 (2012) 4311-4318.

DOI: 10.1016/j.actamat.2012.04.020

Google Scholar

[14] B.W. Reed, B.L. Adams, J.V. Bernier, C.M. Hefferan, A. Henrie, S.F. Li, J. Lind, R.M. Suter, M. Kumar, Acta. Mat., 60 (2012) 2999-3010.

DOI: 10.1016/j.actamat.2012.02.005

Google Scholar

[15] C.M. Hefferan, S.F. Li, J. Lind, U. Lienert, A.D. Rollett, R.M. Suter,in: E.J. Palmiere, B.P. Wynne (Eds.) Recrystallization and Grain Growth Iv, Trans Tech Publications Ltd, Stafa-Zurich, 2012, pp.447-454.

Google Scholar

[16] C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, Powder Diffr, 25 (2010) 132-137.

Google Scholar

[17] C.M. Hefferan, S.F. Li, J. Lind, U. Lienert, A.D. Rollett, P. Wynblatt, R.M. Suter, CMC-Comput. Mat. Contin., 14 (2009) 209-219.

Google Scholar

[18] R.M. Suter, C.M. Hefferan, S.F. Li, D. Hennessy, C. Xiao, U. Lienert, B. Tieman, J. Eng. Mater. Technol.-Trans. ASME, 130 (2008).

Google Scholar

[19] S.F. Li, J. Lind, C.M. Hefferan, R. Pokharel, U. Lienert, A.D. Rollett, R.M. Suter, J. App. Crys., 45 (2012) 1098-1108.

Google Scholar

[20] S.D. Shastri, K. Fezzaa, A. Mashayekhi, W.K. Lee, P.B. Fernandez, P.L. Lee, J. Syncrotron Rad., 9 (2002) 317-322.

Google Scholar

[21] S.D. Shastri, J. Almer, C. Ribbing, B. Cederstrom, J. Syncrotron Rad., 14 (2007) 204-211.

Google Scholar

[22] F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenomena, 160 (2010) 63-68.

Google Scholar

[23] O. Engler, V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. , CRC press, 2010.

DOI: 10.1201/9781482287479

Google Scholar

[24] A. King, M. Herbig, W. Ludwig, P. Reischig, E.M. Lauridsen, T. Marrow, J.Y. Buffiere, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268 (2010) 291-296.

Google Scholar

[25] P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinnott, P. Peralta, B.P. Uberuaga, C.R. Stanek, J. Am. Ceram. Soc., 94 (2011) 1893-1900.

DOI: 10.1111/j.1551-2916.2010.04295.x

Google Scholar

[26] D. Gaston, L.J. Guo, G. Hansen, H. Huang, R. Johnson, D. Knoll, C. Newman, H.K. Park, R. Podgorney, M. Tonks, R. Williamson, Commun. Comput. Phys., 12 (2012) 807-833.

DOI: 10.4208/cicp.091010.140711s

Google Scholar

[27] D. Gaston, L.J. Guo, G. Hansen, H. Huang, R. Johnson, D. Knoll, C. Newman, H.K. Park, R. Podgorney, M. Tonks, R. Williamson, Commun. Comput. Phys., 12 (2012) 834-865.

DOI: 10.4208/cicp.091010.140711s

Google Scholar