Residual Strains in ITER Conductors by Neutron Diffraction

Article Preview

Abstract:

Measurements of internal strains in the superconducting constituent (Nb3Sn phase in Nb3Sn strand) in two cable-in-conduit conductors (CICC) for International Thermonuclear Experimental Reactor were performed using an engineering materials diffractometer TAKUMI of J-PARC. From strain measurements in a CICC for the toroidal field magnet after a performance test of cyclic current, in 100 mm long cut bars, a peak broadening and a large relaxation on residual strain were observed in Nb3Sn phase at a portion received a high magnetic field (high field zone). Internal strain measurements were also conducted in a CICC for the central solenoidal magnets after the similar performance test, in the full-size shape as used in the performance test (3.6 m long) and in 100 mm long cut bars. Three main results were obtained. (1) Residual strain difference before and after the cutting to 100 mm long bar was about 0.1%, (2) a large relaxation on residual thermal strain was observed at the high field zone, and (3) the large relaxation on residual thermal strain at the high field zone was found mainly in a cross sectional side where the Lorentz force coming in.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-91

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Huguet, ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41 (2001) 1503-1513.

DOI: 10.1088/0029-5515/41/10/317

Google Scholar

[2] J.W. Ekin, Cryogenics 20 (1980) 611-624.

Google Scholar

[3] T. Hemmi, S. Harjo, T. Ito, K. Matsui, Y. Nunoya, N. Koizumi, Y. Takahashi, H. Nakajima, K. Aizawa, H. Suzuki, S. Machiya, H. Oguro, Y. Tsuchiya, K. Osamura, IEEE Trans. Appl. Supercond. 21 (2011) 2028-2031.

DOI: 10.1109/tasc.2010.2089770

Google Scholar

[4] T. Hemmi, S. Harjo, Y. Nunoya, H. Kajitani, N. Koizumi, K. Aizawa, S. Machiya and K. Osamura, Supercond. Sci. Technol. 26 (2013) 084002 (6pp).

DOI: 10.1088/0953-2048/26/8/084002

Google Scholar

[5] P. Bruzzone, A. Anghel, A. Fuchs, G. Pasztor, B. Stepanov, M. Vogel, G. Vecsey, IEEE Appl. Supercond. 12 (2002) 520-522.

DOI: 10.1109/tasc.2002.1018457

Google Scholar

[6] Y. Nunoya, Y. Nabara, M. Yoshikawa, K. Matsui, T. Hemmi, Y. Takahashi, T. Isono, N. Koizumi, H. Nakajima, B. Stepanov, P. Bruzzone, IEEE Trans. Appl. Supercond. 21 (2011) 1982-1986.

DOI: 10.1109/tasc.2011.2178370

Google Scholar

[7] T. Hemmi, Y. Nunoya, Y. Nabara, M. Yoshikawa, K. Matsui, H. Kajitani, K. Hamada, T. Isono, Y. Takahashi, N. Koizumi, H. Nakajima, B. Stepanov, P. Bruzzone, IEEE Trans. Appl. Supercond. 22 (2012) 4803305 (5pp).

DOI: 10.1109/tasc.2011.2178370

Google Scholar

[8] S. Harjo, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi and T. Kamiyama, Mater. Sci. Forum 681 (2011) 443-448.

DOI: 10.4028/www.scientific.net/msf.681.443

Google Scholar

[9] R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama, Nucl. Instr. and Meth. A 600 (2009) 94–96.

DOI: 10.1016/j.nima.2008.11.056

Google Scholar

[10] R. de Wit, J. Appl. Cryst. 30 (1997) 510-511.

Google Scholar

[11] K. R. Keller and J. J. Hanak, Phys. Rev. 154 (1967) 628-632.

Google Scholar

[12] T. Hemmi, unpublished work.

Google Scholar

[13] S. Murase, H. Okamoto, T. Wakasa, T. Tsukii, S. Shimamoto, IEEE Trans. Appl. Supercond. 13 (2003) 3386 - 3389

DOI: 10.1109/tasc.2003.812331

Google Scholar

[14] N. Mitchell, A. Devred, D. Larbalestier, P. Lee, C. Sanabria, A. Nijhuis, Electro-mechanical effects in Nb3Sn cable in conduit conductors: use of imperfect superconductors in cable in conduit conductors, presented at MEM 13, Aix-en-Provence, 12-14 March 2013.

DOI: 10.1088/0953-2048/26/11/114004

Google Scholar

[15] A. Nijhuis and Y. Ilyin, Supercond. Sci. Technol. 19 (2006) 945–962.

Google Scholar