Neutron Diffraction and Acoustic Emission Study of Mg-Al-Sr Alloy Reinforced with Short Saffil® Fibers Deformed in Compression

Article Preview

Abstract:

Neutron diffraction method has been applied in the ex-situ investigation of the residual stresses in Mg-5wt.%Al-1 wt.%Sr (AJ51) magnesium alloy reinforced with short Saffil® fibers deformed in compression at room temperature. The residual stresses were measured in the axial and radial directions with respect to the load direction. It is shown that in the initial state the tensile stress is present in the matrix phase. The in-situ acoustic emission measurements were performed with the aim to reveal the main deformation mechanisms operating in the particular stages of the plastic deformation. Ex-situ neutron diffractions experiments showed that the tensile axial residual stress in the matrix increases with increasing plastic deformation while the radial residual stress decreases. In situ acoustic emission measurements indicate that the main deformation mechanisms are twinning and glide of bigger dislocation ensembles in the early stages of the compressive deformation while the fibers breakage was observed in the vicinity of the maximum stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-98

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chawla, K.K. Chawla, Metal Matrix Composites, Springer, New York, 2006.

Google Scholar

[2] N. Shi, R.J. Arsenault, Annu. Rev., Mater. Sci. 24 (1994) 321.

Google Scholar

[3] Z. Trojanová, Z. Száraz, F. Chmelík, P. Lukáč, Mat. Sci. Eng. A-Struct, 528 (2011) 2479-2483.

DOI: 10.1016/j.msea.2010.11.058

Google Scholar

[4] Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček and P. Lukáč, Mechanical and fracture properties of an AZ91 Magnesium Alloy reinforced by Si and SiC particles, Comp. Science Technol. 69 (2009) 2256-2264.

DOI: 10.1016/j.compscitech.2009.06.016

Google Scholar

[5] Z. Trojanová, Z. Száraz, P. Palček, M. Chalupová, Magnesium Alloys Based Composites, Magnesium alloys-Design, Processing and Properties. Ed. F. Czerwinski, INTECH (2011) 501-526.

DOI: 10.5772/67028

Google Scholar

[6] M.E. Fitzpatrick, P.J. Withers, A. Baczmanski, M.T. Hutchings, R. Levy, M. Ceretti, A. Lodini, Acta Mater. 50 (2002) 1031–1040.

DOI: 10.1016/s1359-6454(01)00401-3

Google Scholar

[7] P. Fernández-Castrillo, G. Bruno, G. González-Doncel, Mater. Sci. Eng. A 487 (2008) 26-32.

Google Scholar

[8] K. Máthis and F. Chmelík (2012). Exploring Plastic Deformation of Metallic Materials by the Acoustic Emission Technique, Acoustic Emission, Dr. Wojciech Sikorski (Ed.), ISBN: 978-953-51-0056-0, InTech.

DOI: 10.5772/31660

Google Scholar

[9] A. A. Pollock, Introduction to acoustic emission and a practical example, J. Environ. Sci., 22 (1979) 39-41.

Google Scholar

[10] O. Muránsky, M. R. Barnett, D. G. Carr, S. C. Vogel, E. C. Oliver, Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission. Acta Mater. 58 (2010) 1503–1517.

DOI: 10.1016/j.actamat.2009.10.057

Google Scholar

[11] M. E. Tuttle. Review of the concepts of stress, strain, and Hooke's Law, Dept. Mechanical Engineering, University of Washington, Seattle.

Google Scholar

[12] R.F.S. Hearmon. The Elastic Constants of Anisotropic Materials II, Advan. Phys. 5 (1956) 323-382.

Google Scholar

[13] M. T. Hutchings, , P. J. Withers, , T. M. Holden, and T. Lorentzen, Introduction to the Characterization of Residual Stress by Neutron Diffraction, Taylor & Francis, Boca Raton. 2005.

DOI: 10.1201/9780203402818

Google Scholar

[14] F. Chmelik, J. Kiehn, P. Lukáč, K. U. Kainer, and B. L. Mordike, Acoustic emission and dilatometry for non-destructive characterisation of microstructural changes in Mg based metal matrix composites submitted to thermal cycling, Scripta Mater., 38(1) (1997) 81-87.

DOI: 10.1016/s1359-6462(97)00416-8

Google Scholar

[15] Z. Jiang, J. Lian, D. Yang, S. Dong, Mater. Sci. Engn. A248 (1998) 256.

Google Scholar

[16] J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York. 1975.

Google Scholar

[17] A. Vinogradov, A. Lazarev, Continuous acoustic emission during intermittent plastic flow in alpha-brass, Scripta Mater. 66 (2012) 745-748.

DOI: 10.1016/j.scriptamat.2012.01.053

Google Scholar

[18] T. Richeton, J. Weiss, F. Louchet, Dislocation avalanches: Role of temperature, grain size and strain hardening, Acta Mater. 53 (2005) 4463-4471.

DOI: 10.1016/j.actamat.2005.06.007

Google Scholar

[19] K. Máthis, G. Farkas, M. Janeček, H. Choe. Acoustic emission study of Mg-Al-Sr alloy reinforced with short Saffil((R)) fibers deformed in compression, Mater. Sci. Eng., 575 (2013) 1-5.

DOI: 10.1016/j.msea.2013.03.045

Google Scholar

[20] C. Scruby, H. N. G. Wadley, and J. E. Sinclair, The oirigin of acoustic-emission during deformation of aluminum and an aluminum-magnesium alloy, Philos. Mag. A 44(2) (1981) 249-274.

DOI: 10.1080/01418618108239532

Google Scholar