[1]
N. Chawla, K.K. Chawla, Metal Matrix Composites, Springer, New York, 2006.
Google Scholar
[2]
N. Shi, R.J. Arsenault, Annu. Rev., Mater. Sci. 24 (1994) 321.
Google Scholar
[3]
Z. Trojanová, Z. Száraz, F. Chmelík, P. Lukáč, Mat. Sci. Eng. A-Struct, 528 (2011) 2479-2483.
DOI: 10.1016/j.msea.2010.11.058
Google Scholar
[4]
Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček and P. Lukáč, Mechanical and fracture properties of an AZ91 Magnesium Alloy reinforced by Si and SiC particles, Comp. Science Technol. 69 (2009) 2256-2264.
DOI: 10.1016/j.compscitech.2009.06.016
Google Scholar
[5]
Z. Trojanová, Z. Száraz, P. Palček, M. Chalupová, Magnesium Alloys Based Composites, Magnesium alloys-Design, Processing and Properties. Ed. F. Czerwinski, INTECH (2011) 501-526.
DOI: 10.5772/67028
Google Scholar
[6]
M.E. Fitzpatrick, P.J. Withers, A. Baczmanski, M.T. Hutchings, R. Levy, M. Ceretti, A. Lodini, Acta Mater. 50 (2002) 1031–1040.
DOI: 10.1016/s1359-6454(01)00401-3
Google Scholar
[7]
P. Fernández-Castrillo, G. Bruno, G. González-Doncel, Mater. Sci. Eng. A 487 (2008) 26-32.
Google Scholar
[8]
K. Máthis and F. Chmelík (2012). Exploring Plastic Deformation of Metallic Materials by the Acoustic Emission Technique, Acoustic Emission, Dr. Wojciech Sikorski (Ed.), ISBN: 978-953-51-0056-0, InTech.
DOI: 10.5772/31660
Google Scholar
[9]
A. A. Pollock, Introduction to acoustic emission and a practical example, J. Environ. Sci., 22 (1979) 39-41.
Google Scholar
[10]
O. Muránsky, M. R. Barnett, D. G. Carr, S. C. Vogel, E. C. Oliver, Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission. Acta Mater. 58 (2010) 1503–1517.
DOI: 10.1016/j.actamat.2009.10.057
Google Scholar
[11]
M. E. Tuttle. Review of the concepts of stress, strain, and Hooke's Law, Dept. Mechanical Engineering, University of Washington, Seattle.
Google Scholar
[12]
R.F.S. Hearmon. The Elastic Constants of Anisotropic Materials II, Advan. Phys. 5 (1956) 323-382.
Google Scholar
[13]
M. T. Hutchings, , P. J. Withers, , T. M. Holden, and T. Lorentzen, Introduction to the Characterization of Residual Stress by Neutron Diffraction, Taylor & Francis, Boca Raton. 2005.
DOI: 10.1201/9780203402818
Google Scholar
[14]
F. Chmelik, J. Kiehn, P. Lukáč, K. U. Kainer, and B. L. Mordike, Acoustic emission and dilatometry for non-destructive characterisation of microstructural changes in Mg based metal matrix composites submitted to thermal cycling, Scripta Mater., 38(1) (1997) 81-87.
DOI: 10.1016/s1359-6462(97)00416-8
Google Scholar
[15]
Z. Jiang, J. Lian, D. Yang, S. Dong, Mater. Sci. Engn. A248 (1998) 256.
Google Scholar
[16]
J.A. Hartigan. Clustering algorithms. John Wiley & Sons, Inc. New York. 1975.
Google Scholar
[17]
A. Vinogradov, A. Lazarev, Continuous acoustic emission during intermittent plastic flow in alpha-brass, Scripta Mater. 66 (2012) 745-748.
DOI: 10.1016/j.scriptamat.2012.01.053
Google Scholar
[18]
T. Richeton, J. Weiss, F. Louchet, Dislocation avalanches: Role of temperature, grain size and strain hardening, Acta Mater. 53 (2005) 4463-4471.
DOI: 10.1016/j.actamat.2005.06.007
Google Scholar
[19]
K. Máthis, G. Farkas, M. Janeček, H. Choe. Acoustic emission study of Mg-Al-Sr alloy reinforced with short Saffil((R)) fibers deformed in compression, Mater. Sci. Eng., 575 (2013) 1-5.
DOI: 10.1016/j.msea.2013.03.045
Google Scholar
[20]
C. Scruby, H. N. G. Wadley, and J. E. Sinclair, The oirigin of acoustic-emission during deformation of aluminum and an aluminum-magnesium alloy, Philos. Mag. A 44(2) (1981) 249-274.
DOI: 10.1080/01418618108239532
Google Scholar