Cockcroft-Latham Ductile Fracture Criteria for Non Ferrous Materials

Article Preview

Abstract:

The determination of ductile fracture criteria as well as friction coefficient, stress-strain curves, constants for Hollomon's equation and a material workability based on analytical methods as a forming limit diagram, a normalized Cockcroft-Latham criteria (nCL)) ring and compression tests for two materials based on aluminum and copper alloys were carried out. A calculation of nCL criteria on the basis of a compression test and numerical simulations was made. The critical values nCL criteria resulting from compression test were determined. Prediction of nCL criteria by numerical simulations were confirmed by laboratory compression tests. The values obtained from numerical simulations and compression tests for both materials show a good coincidence in results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-378

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.P.P.A. Gouveia, J.M.C. Rodrigues, P.A.F. Martins, J. Mater. Process. Technol. 101 (2000) 52- 63.

Google Scholar

[2] A. Venugopal-Rao, N. Ramakrishnan, R. Krishna-Kumar, J. Mater. Process. Technol. 142 (2003) 29 – 42.

Google Scholar

[3] M. Maccarini, R. Bidulsky, M. Actis Grande, Acta Metall. Slovaca 18 (2012) 69-75.

Google Scholar

[4] A.S. Wifi, N. El-Abbasi, A. Abdel-Hamid, Materials Processing Defects, Elsevier 44 (1995) 333-256.

Google Scholar

[5] R. Bidulsky, J. Bidulska, M. Actis Grande, Chem. Listy 105 (2011) s506-s509.

Google Scholar

[6] M. Kvačkaj et al., Acta Metall. Slovaca 16 (2010) 84-90.

Google Scholar

[7] T. Kvačkaj et al., Kovove Mater. 45 (2007) 249-254.

Google Scholar

[8] J. Chen, X. Zhou, J. Mater. Sci. Technol. 21 (2005) 521-525.

Google Scholar

[9] P. Brozzo, B. Deluca, R. Rendina, in: Proceedings of the Seventh Biennial Congress of the International Deep Drawing Research Group, (1972).

Google Scholar

[10] M.G. Cockcroft, D.J. Latham, J. Inst. Met. 96 (1968) 33-39.

Google Scholar

[11] E. Spisak, J. Majerníkova, Acta Metall. Slovaca 18 (2012) 109-116.

Google Scholar

[12] M.A. Shabara, A.A. El-Domiaty, A. Kandil, J. Mater. Eng. Perform. 5 (1996) 478-488.

Google Scholar

[13] P. Bella, J. Hasan, R. Kocisko, A. Kovacova, J. Sas, I. Hrebicek, Acta Metall. Slovaca 17 (2011) 200-206.

Google Scholar

[14] B.P.P.A. Gouveia, J.M.C. Rodrigues, P.A.F. Martins, Int. J. Mech. Sci. 38 (1996) 361- 460.

Google Scholar

[15] Y.F. Xia, G.Z. Quan, J. Zhou, T. Nonferr. Metal. Soc. 20 (2010) 580-583.

Google Scholar

[16] D. Dumont, A. Deschamps, Y. Brechet, Acta Mater. 52 (2004) 2529-2540.

Google Scholar

[17] H.S. Kim, Y.T. Im, M. Geiger, J. Manuf. Sci. E-T ASME 121 (1999) 336-344.

Google Scholar

[18] S.I. Oh, C.C. Chen, S. Kobayashi, J. Eng. Ind. Trans. ASME 101 (1979) 36-44.

Google Scholar

[19] L. Xue, Int. J. Solids Struct. 44 (2007) 5163-5181.

Google Scholar

[20] S.E. Clift, P. Hartley, C.E.N. Sturgess, G.W. Rowe, Journal of Mechanical Sciences 32 (1990) 1- 17.

Google Scholar

[21] D.C. Ko, D.H. Kim, B.M. Kim, J.C. Choi, J. Mater. Process. Technol. 80–81 (1998) 487-492.

Google Scholar

[22] X. Teng, T. Wierzbicki, Engineering Fracture Mechanics 73 (2006) 1653-1678.

Google Scholar

[23] R. Bidulsky, J. Bidulska, M. Actis Grande, Chem. Listy 106 (2012) 375-376.

Google Scholar

[24] R. Bidulsky, J. Bidulska, M. Actis Grande, Acta Phys. Pol. A 122 (2012) 548-552.

Google Scholar

[25] Z.J. Zhang, J.K. Park, Advanced Materials Research 295-297 (2011) 2283-2289.

Google Scholar

[26] V. Vazquez, T. Altan, J. Mater. Process. Technol. 98 (2000) 212-223.

Google Scholar

[27] H. Sofuoglu, H. Gedikli, J. Rasty, Transactions of ASME, J. Eng. Mater. Technol. 123 (2001) 338-348.

Google Scholar