[1]
H. Goto, K. -I. Miyazawa and T. Kadoya, Effect of the Composition of Oxide on the Reaction between Oxide and Sulfur during Soldification of Steels, ISIJ International 35, 12 (1994) 1477-1482.
DOI: 10.2355/isijinternational.35.1477
Google Scholar
[2]
H. Goto, K. -I. Miyazawa, W. Yamada and K. Tanaka, Effect of Cooling Rate on Composition of Oxides Precipitated during Solidification of Steels, ISIJ International 35, 6 (1995) 708-714.
DOI: 10.2355/isijinternational.35.708
Google Scholar
[3]
S. Liu and D.L. Olson, The Influence of Inclusion Chemical Composition on Weld Metal Microstructure, Journal Materials Engineering 9 (1987) 237-251.
DOI: 10.1007/bf02834144
Google Scholar
[4]
S.S. Babu, F. Reidenbach, S.A. David, T. Böllinghaus and H. Hoffmeister, Effect of high energy density welding processes on inclusion and microstructure formation in steel welds, Science and Technology of Welding and Joining 4, 2 (1999) 63-73.
DOI: 10.1179/136217199101537581
Google Scholar
[5]
S.S. Babu, S.A. David and J.M. Vitek, Effect of oxide inclusions on the solid state transformations in low-alloy fusion welds, 4th International Conference on Trends in Welding Research, Gatlinburg, USA, 1995, 1-7.
Google Scholar
[6]
S. Ohkita and Y. Horii, Recent Developments in Controlling the Microstructure and Properties of Low Alloy Steel Weld Metals, ISIJ International 35, 10 (1995) 1170-1182.
DOI: 10.2355/isijinternational.35.1170
Google Scholar
[7]
D.S. Sarma, A.V. Karasev and P.G. Jönsson, On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels, ISIJ International 49, 7 (2009) 1063-1074.
DOI: 10.2355/isijinternational.49.1063
Google Scholar
[8]
C. van der Eijk, O. Grong and J. Hjelen, Quantification of Inclusion-Stimulated Ferrite Nucleation in Wrought Steel using the SEM-EBSD Technique, Proceedings of the International Conference on Solid State Phase Transformations, JIM, Sendai, Japan, 1999, 1573-1576.
Google Scholar
[9]
J. -L. Lee and Y. -T. Pan, The Formation of Intergranular Acicular Ferrite in Simulated Heat-affected Zone, ISIJ International 35, 8 (1995) 1027-1033.
DOI: 10.2355/isijinternational.35.1027
Google Scholar
[10]
Z. Zhang and R.A. Farrar, Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals, Materials Science and Technology 12 (1996) 237-260.
DOI: 10.1179/mst.1996.12.3.237
Google Scholar
[11]
J. -H. Shim, Y. -J. Oh, J. -Y. Suh, W. Cho, J. -D. Shim, J. -S. Byun and D.N. Lee, Ferrite Nucleation potency of non-metallic inclusions in medium carbon steels, Acta Materialia 49 (2001) 2115-2122.
DOI: 10.1016/s1359-6454(01)00134-3
Google Scholar
[12]
J. -S. Byun, J. -H. Shim, Y.W. Cho and D.N. Lee, Non-metallic inclusion and intergranular nucleation of ferrite in Ti-killed C-Mn steel, Acta Materialia 51 (2002) 1593-1606.
DOI: 10.1016/s1359-6454(02)00560-8
Google Scholar
[13]
H. Mabuchi, R. Uemori and M. Fujioka, The Role of Mn Depletion in Intra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels, ISIJ International 36, 11 (1996) 1406-1412.
DOI: 10.2355/isijinternational.36.1406
Google Scholar
[14]
B. Linzer, C. Bernhard and G. Hohenbichler, Experimental simulation of strip casting, BHM 149 (2004), 107-111.
Google Scholar
[15]
B. Linzer, G. Hohenbichler, S. Bragin, G. Arth and C. Bernhard, Experimental Simulation of the Solidification of Steel at Higher Cooling Rates, BHM 154 (2009), 498-503.
DOI: 10.1007/s00501-009-0511-9
Google Scholar