High Temperature Tensile Behavior of Directionally Solidified MAR-M247 Superalloy

Article Preview

Abstract:

In this study, two heat treatment schemes were proposed to study the high temperature mechanical behavior of directionally solidified MAR-M247 superalloy. Two withdraw rates, namely, 60 and 180 mm/h were used to produce directionally solidified MAR-M247 specimens by the Bridgeman type furnace. Standard heat treatment (HT1) procedures are solution treatment at 1230°C for 2 h/ArC, then first aging at 980°C for 5 h/AC and followed by second aging at 870°C for 20 h/AC. Modified heat treatment (HT2) is solution treatment at 1260°C for 3 h/ArC and first aging at 980°C for 6 h/AC, then the same second aging procedure. Uneven size, shape and fusion-alike of gamma prime precipitates are observed after full HT1 scheme, whereas even size but fine gamma prime precipitates are observed in HT2 specimen. All three tensile properties (elongation to failure, ultimate tensile strength and yield strength) of HT2 specimens are higher than these of HT1 specimens either at room temperature 25°C or at high temperature 982°C for both withdraw rates. Uneven distribution of the γ′ precipitates attributes to the initial fracture of HT1 specimens.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1153-1158

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.A.S. Reed, I. Sinclair, X.D. Wu, Fatigue crack path prediction in UDIMET 720 nickel-based alloy single crystals, Metall. Mater. Trans. A 31 (2000) 109–123.

DOI: 10.1007/s11661-000-0058-6

Google Scholar

[2] M. Koble, K. Neuking, G. Eggeler, Dislocation reactions and microstructural instability during 1025°C shear creep testing of superalloy single crystals, Mater. Sci. Eng. A 234–236 (1997) 877–879.

DOI: 10.1016/s0921-5093(97)00366-3

Google Scholar

[3] F. Sczerzene, G.E. Maurer, Developments in disc materials, Mater. Sci. Technol. 3 (1987) 733–742.

Google Scholar

[4] J. Zheng, B.E. Powell, Effect of stress ratio and test methods on fatigue crack growth rate for nickel based superalloy Udimet720 , Int. J. Fatigue 21 (1999) 507–513.

DOI: 10.1016/s0142-1123(99)00009-2

Google Scholar

[5] C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloy II, John Wiley and Sons, New York, (1987).

Google Scholar

[6] M.T. Kim, S.Y. Chang, J.B. Won, Effect of HIP process on the micro-structural evolution of a nickel-based superalloy, Mater. Sci. Eng. A 441 (2006) 126–134.

DOI: 10.1016/j.msea.2006.09.060

Google Scholar

[7] R.C. Kramb, M.M. Antony, S.L. Semiatin, Homogenization of a nickel-base superalloy ingot material, Scr. Mater. 54 (2006) 1645–1649.

DOI: 10.1016/j.scriptamat.2006.01.008

Google Scholar

[8] K.L. Zeisler-Mashl, B.J. Pletka, Segregation During Solidification in the MAR-M247, in: S. D Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (Eds. ), Superalloys 1992, TMS, Warrendale, PA, 1992, p.175.

DOI: 10.7449/1992/superalloys_1992_175_184

Google Scholar

[9] S.R. Hegde, R.M. Kearsey, J.C. Beddoes, Designing homogenization-solution heat treatment for single crystal superalloys, Mater. Sci. Eng. A 527 (2010) 5528–5538.

DOI: 10.1016/j.msea.2010.05.019

Google Scholar

[10] G.E. Fuchs, Solution heat treatment response of a third generation single crystal Ni-base superalloy, Mater. Sci. Eng. A 300 (2001) 52–60.

DOI: 10.1016/s0921-5093(00)01776-7

Google Scholar

[11] H.Y. Bor, C.N. Wei, R.R. Jeng, P.Y. Ko, Elucidating the effects of solution and double ageing treatment on the mechanical properties and toughness of MAR-M247 superalloy at high temperature, Mate. Chem. Phy. 109 (2008), 334–341.

DOI: 10.1016/j.matchemphys.2007.11.041

Google Scholar

[12] J.E. Doherty, B.H. Kear, A.F. Giamiei, Origin of ductility enhancement in Hf-doped Mar-M200, J. Metals 23 (1971) 59–62.

DOI: 10.1007/bf03355744

Google Scholar

[13] H.E. Huang, C.H. Koo, Effect of solution-treatment on microstructure and mechanical properties of cast fine-grain CM247LC superalloy, Mater. Trans. 45 (2004) 1360–1366.

DOI: 10.2320/matertrans.45.1360

Google Scholar

[14] M.V. Nathal, R.D. Maier, L.J. Ebert, The Influence of Cobalt on the Tensile and Stress-Rupture Properties of the Nickel-Base Superalloy MAR-M247, Metall. Mater. Trans. A 13 (1982) 1767–1774.

DOI: 10.1007/bf02647832

Google Scholar

[15] M.V. Nathal, R.D. Maier, L.J. Ebert, The Influence of Cobalt on the Microstructure of the Nickel-Base Superalloy MAR-M247, Metall. Mater. Trans. A 13 (1982) 1775–1783.

DOI: 10.1007/bf02647833

Google Scholar

[16] K. Harris, G.L. Erickson, R.E. Schwer, Mar M247 Derivations CM 247 LC DS Alloy CMSX Single Crystal Alloy Properties & Performance, in: M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, J.F. Radavich (Eds. ), Superalloy 1984, TMS, Warrendale, PA, 1984, p.221.

DOI: 10.7449/1984/superalloys_1984_221_230

Google Scholar

[17] H.Y. Bor, C.G. Chao, C.Y. Ma, The influence of magnesium on carbide characteristics and creep behavior of the MAR-M247 superalloy, Scr. Mater. 38 (1997) 329–335.

DOI: 10.1016/s1359-6462(97)00444-2

Google Scholar

[18] S.M. Copley, B.H. Kear, G.M. Rowe, The temperature and orientation dependence of yielding in Mar-M200 single crystals, Mater. Sci. Eng. 10 (1972) 87–92.

DOI: 10.1016/0025-5416(72)90072-9

Google Scholar

[19] R.R. Jensen, J.K. Tien, Temperature and strain rate dependence of stress-strain behavior in a nickel-base superalloy, Metall. Trans. A 16 (1985) 1049–1068.

DOI: 10.1007/bf02811675

Google Scholar

[20] L.Z. He, Q. Zheng, X.F. Sun, G.C. Hou, H.R. Guan, Z.Q. Hu, Low ductility at intermediate temperature of Ni-base superalloy M963, Mater. Sci. Eng. A 380 (2004) 340–348.

DOI: 10.1016/j.msea.2004.03.057

Google Scholar

[21] M.A. Meyers, K.K. Chawla, Mechianical Metallurgy, Prentice-Hall, (1984).

Google Scholar

[22] G.E. Dieter, Mechianical Metallurgy, third edition, McGraw-Hill, New York, (1986).

Google Scholar