Spark Plasma Heat Treated ZrB2-SiC and HfB2-SiC Composites

Article Preview

Abstract:

Ultra-high-temperature ceramics (UHTC) such as ZrB2 and HfB2 with SiC nanofiller are useful for propulsion and thermal protection systems. ZrB2 and HfB2 with 10-20 wt% SiC were prepared using ultra-sonication, rotary evaporation, and spark plasma heat treatment to high temperatures (~2,000°C) and pressures (50-60 MPa). We used positron annihilation lifetime spectroscopy (PALS) to study the nanoporosity, SEM for particle size distribution, and microhardness tester for Vickers hardness. The PALS studies were performed using a 22Na positron source and the positron lifetime spectra were analyzed to three components using POSFIT program. The first and second components are related to positrons annihilating in bulk and in vacancy clusters, respectively; and the third component to positronium annihilation in nanopores within the granules. The PALS results indicate that HfB2 has larger vacancy clusters and nanopores with lesser concentrations compared to ZrB2 and SiC. The SEM observations showed that HfB2 has larger particles compared to ZrB2 and SiC showed wide range of size distribution. The Vickers-Hardness Number (VHN) is measured for spark plasma heat treated composites using a microhardness tester and the results indicate that 10wt%SiC composite has higher hardness compared to 20wt%SiC in both ZrB2-SiC and HfB2-SiC composites. HfB2-SiC composites seem to be more brittle compared to ZrB2-SiC composites. This may be due to larger size and smoother surface of HfB2 particles (600 nm) compared to ZrB2 particles (240 nm).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1176-1181

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347-1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[2] Q. Liu, W. Han, X. Zhang, S. Wang, and J. Han, Microstructure and mechanical properties of ZrB2-SiC composites, Materials Letters 63 (2009) 1323-1325.

DOI: 10.1016/j.matlet.2009.02.054

Google Scholar

[3] R. Licheri, R. Orrù, A. M. Locci, and G. Cao, Efficient synthesis/sintering routes to obtain fully dense ZrB2-SiC ultra-high-temperature ceramics, Ind. Eng. Chem. Res. 46 (2007) 9087- 9096.

DOI: 10.1021/ie0701423

Google Scholar

[4] R. Licheri, R. Orrù, C. Musa, A. M. Locci, and G. Cao, Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis, J. Alloys Compd. 478 (2009) 572-578.

DOI: 10.1016/j.jallcom.2008.11.092

Google Scholar

[5] T. E. M. Staab, M. J. Puska, M. Hakala, A. Sieck, M. Haugk, T. Frauenheim, and H. S. Leipner, Irradiation experiment revisited – Stability and positron lifetime of large vacancy clusters in silicon, Materials Science Forum 363-365 (2001) 135-137.

DOI: 10.4028/www.scientific.net/msf.363-365.135

Google Scholar

[6] M. Mizuno, H. Araki, and Y. Shirai, Theoretical calculations of positron lifetimes for metal oxides, Mater. Trans. 45 (2004) 1964-(1967).

DOI: 10.2320/matertrans.45.1964

Google Scholar

[7] Y. C. Jean, Free-volume properties of polymers probed by positron annihilation spectroscopy, Mater. Sci. Forum, 105-110 (1992) 309-316.

DOI: 10.4028/www.scientific.net/msf.105-110.309

Google Scholar

[8] R. Morsya, M. Elsayed, R. Krause-Rehberg, G. Dlubek, and T. Elnimr, Positron annihilation spectroscopic study of hydrothemally synthesized fine nanoporous hydroxyapatite agglomerates, J. Euro. Ceramic Soc. 30 (2010) 1897–(1901).

DOI: 10.1016/j.jeurceramsoc.2010.03.014

Google Scholar

[9] J. Marschall, D. C. Erlich, H. Manning, W. Duppler, D. Ellerby, and M. Gasch, Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites, J. Mater. Sci. 39 (2004) 5959-5968.

DOI: 10.1023/b:jmsc.0000041692.72915.e8

Google Scholar

[10] R. K. Enneti, C. Carney, S. Park, and S. V. Atre, Taguchi analysis on the effect of process parameters on densification during spark plasma sintering of HfB2-20SiC, Int. J. Refractory Metals & Hard Matter. 31 (2012) 293-296.

DOI: 10.1016/j.ijrmhm.2011.11.001

Google Scholar