A Material Genomic Design of Advanced High Performance, Non-Corroding Steels for Ambient and High Temperature Applications

Article Preview

Abstract:

This work presents an artificial intelligence based design of a series of novel advanced high performance steels for ambient and high temperature applications, following the principle of the materials genome initiative, using an integrated thermodynamics/kinetics based model in combination with a genetic algorithm optimization routine. Novel steel compositions and associated key heat treatment parameters are designed both for applications at the room temperature (ultra-high strength maraging stainless steel) and at high temperatures (ferritic, martensitic and austenitic creep resistant steels). The strength of existing high end alloys of aforementioned four types are calculated according to the corresponding design criteria. The model validation studies suggest that the newly designed alloys have great potential in outperforming existing grades.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1201-1206

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kaufman, J. Ågren, CALPHAD, first and second generation – Birth of the materials genome, Scr. Mate. http: /dx. doi. org/10. 1016/j. scriptamat. 2012. 12. 003.

Google Scholar

[2] P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater. 55 (2007) 4877-4889.

DOI: 10.1016/j.actamat.2007.05.004

Google Scholar

[3] Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, P.K. Liaw, New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments, Intermetallics 29 (2012).

DOI: 10.1016/j.intermet.2012.05.007

Google Scholar

[4] V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650 °C with supporting thermodynamic modelling, Mater. Sci. Eng. A 477 (2008) 334-343.

DOI: 10.1016/j.msea.2007.05.047

Google Scholar

[5] H.K.D.H. Bhadeshia, Design of ferritic creep-resistant steels, ISIJ Int. 41 (2001) 626-640.

DOI: 10.2355/isijinternational.41.626

Google Scholar

[6] S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, B. Raj, Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels, Mater. Sci. Eng. A 485 (2008) 571-580.

DOI: 10.1016/j.msea.2007.08.019

Google Scholar

[7] L. Vitos, P.A. Korzhavyi, B. Johansson, Stainless steel optimization from quantum mechanical calculations, Nat. Mater. 2 (2003) 25-28.

DOI: 10.1038/nmat790

Google Scholar

[8] G.P.M. Leyson, L.G. Hector Jr, W.A. Curtin, Solute strengthening from first principles and application to aluminum alloys, Acta Mater. 60 (2012) 3873-3884.

DOI: 10.1016/j.actamat.2012.03.037

Google Scholar

[9] D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Mater. 55 (2007) 4475-4487.

DOI: 10.1016/j.actamat.2007.04.024

Google Scholar

[10] W. Xu, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Designing nanoprecipitation strengthened UHS stainless steels combining genetic algorithms and thermodynamics, Comput. Mater. Sci. 44 (2008) 678-689.

DOI: 10.1016/j.commatsci.2008.05.003

Google Scholar

[11] W. Xu, P.E.J. Rivera-Díaz-del-Castillo, W. Wang, K. Yang, V. Bliznuk, L.A.I. Kestens, S. van der Zwaag, Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates, Acta Mater. 58 (2010).

DOI: 10.1016/j.actamat.2010.02.028

Google Scholar

[12] W. Xu, P.E.J. Rivera-Díaz-Del-Castillo, S. van der Zwaag, Genetic alloy design based on thermodynamics and kinetics, Philos. Mag. 88 (2008) 1825-1833.

DOI: 10.1080/14786430802322180

Google Scholar

[13] H. Springer, D. Raabe, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1. 2C-xAl triplex steels, Acta Mater. 60 (2012) 4950-4959.

DOI: 10.1016/j.actamat.2012.05.017

Google Scholar

[14] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5 (2006).

DOI: 10.1038/nmat1593

Google Scholar

[15] G.B. Olson, Computational design of hierarchically structured materials, Science 277 (1997) 1237-1242.

DOI: 10.1126/science.277.5330.1237

Google Scholar

[16] W. Xu, Q. Lu, X. Xu, S. van der Zwaag, Computer method in materials science, in press.

Google Scholar

[17] Q. Lu, W. Xu, S. van der Zwaag, To be published.

Google Scholar

[18] Q. Lu, W. Xu, S. van der Zwaag, Computational design of precipitation strengthened austenitic heat resistant steels, Philos. Mag. DOI: 10. 1080/14786435. 2013. 809493, (2013).

DOI: 10.1080/14786435.2013.809493

Google Scholar

[19] H. Suzuki, Dislocations and Mechanical Properties of Crystals, John Wiley, New York, (1957).

Google Scholar