[1]
L. Kaufman, J. Ågren, CALPHAD, first and second generation – Birth of the materials genome, Scr. Mate. http: /dx. doi. org/10. 1016/j. scriptamat. 2012. 12. 003.
Google Scholar
[2]
P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater. 55 (2007) 4877-4889.
DOI: 10.1016/j.actamat.2007.05.004
Google Scholar
[3]
Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, P.K. Liaw, New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments, Intermetallics 29 (2012).
DOI: 10.1016/j.intermet.2012.05.007
Google Scholar
[4]
V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650 °C with supporting thermodynamic modelling, Mater. Sci. Eng. A 477 (2008) 334-343.
DOI: 10.1016/j.msea.2007.05.047
Google Scholar
[5]
H.K.D.H. Bhadeshia, Design of ferritic creep-resistant steels, ISIJ Int. 41 (2001) 626-640.
DOI: 10.2355/isijinternational.41.626
Google Scholar
[6]
S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, B. Raj, Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels, Mater. Sci. Eng. A 485 (2008) 571-580.
DOI: 10.1016/j.msea.2007.08.019
Google Scholar
[7]
L. Vitos, P.A. Korzhavyi, B. Johansson, Stainless steel optimization from quantum mechanical calculations, Nat. Mater. 2 (2003) 25-28.
DOI: 10.1038/nmat790
Google Scholar
[8]
G.P.M. Leyson, L.G. Hector Jr, W.A. Curtin, Solute strengthening from first principles and application to aluminum alloys, Acta Mater. 60 (2012) 3873-3884.
DOI: 10.1016/j.actamat.2012.03.037
Google Scholar
[9]
D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Mater. 55 (2007) 4475-4487.
DOI: 10.1016/j.actamat.2007.04.024
Google Scholar
[10]
W. Xu, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Designing nanoprecipitation strengthened UHS stainless steels combining genetic algorithms and thermodynamics, Comput. Mater. Sci. 44 (2008) 678-689.
DOI: 10.1016/j.commatsci.2008.05.003
Google Scholar
[11]
W. Xu, P.E.J. Rivera-Díaz-del-Castillo, W. Wang, K. Yang, V. Bliznuk, L.A.I. Kestens, S. van der Zwaag, Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates, Acta Mater. 58 (2010).
DOI: 10.1016/j.actamat.2010.02.028
Google Scholar
[12]
W. Xu, P.E.J. Rivera-Díaz-Del-Castillo, S. van der Zwaag, Genetic alloy design based on thermodynamics and kinetics, Philos. Mag. 88 (2008) 1825-1833.
DOI: 10.1080/14786430802322180
Google Scholar
[13]
H. Springer, D. Raabe, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1. 2C-xAl triplex steels, Acta Mater. 60 (2012) 4950-4959.
DOI: 10.1016/j.actamat.2012.05.017
Google Scholar
[14]
J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5 (2006).
DOI: 10.1038/nmat1593
Google Scholar
[15]
G.B. Olson, Computational design of hierarchically structured materials, Science 277 (1997) 1237-1242.
DOI: 10.1126/science.277.5330.1237
Google Scholar
[16]
W. Xu, Q. Lu, X. Xu, S. van der Zwaag, Computer method in materials science, in press.
Google Scholar
[17]
Q. Lu, W. Xu, S. van der Zwaag, To be published.
Google Scholar
[18]
Q. Lu, W. Xu, S. van der Zwaag, Computational design of precipitation strengthened austenitic heat resistant steels, Philos. Mag. DOI: 10. 1080/14786435. 2013. 809493, (2013).
DOI: 10.1080/14786435.2013.809493
Google Scholar
[19]
H. Suzuki, Dislocations and Mechanical Properties of Crystals, John Wiley, New York, (1957).
Google Scholar