Synthesis of Physically Functionalized Carbon Nanotube Reinforced Al-Si Nanocomposite by Spark Plasma Sintering

Article Preview

Abstract:

Multiwalled carbon nanotube (MWCNT) reinforced Al-Si (11 wt%) alloy based nanocomposites were synthesized by spark plasma sintering using high energy ball milled nanocrystalline Al-Si powders mixed with physically functionalized MWCNTs. Improvement in MWCNT dispersion and associated improvement in densification of the nanocomposites were confirmed. The microhardness and elastic modulus of the nanocomposites measured by nanoindentation exhibited appreciable improvement. Grain size measurement by X ray diffraction and transmission electron microscopy confirmed achievement of nanocrystalline grains in Al-Si powder after ball milling, as well as in the consolidated nanocomposites. TEM analysis was performed to reveal the dislocation activity, effect of presence of primary Si and distribution of MWCNTs in the nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1542-1547

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphite carbon, Nature 354 (1991) 56-58.

Google Scholar

[2] J.P. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes: A fiber digest for beginners, Carbon 40 (2002) 1729-1734.

DOI: 10.1016/s0008-6223(02)00012-x

Google Scholar

[3] J.Y. Huang, H. Yasuda, H. Mori (1999), Highly curved carbon nanostructures produced by ball-milling, Chem. Phy. Let. 303 (1999) 130-134.

DOI: 10.1016/s0009-2614(99)00131-1

Google Scholar

[4] Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, D.H. Wu, Transformation of carbon nanotubes to nanoparticles by ball milling process, Carbon 37 (1999) 493-497.

DOI: 10.1016/s0008-6223(98)00218-8

Google Scholar

[5] Z. Konya, J. Zhu, K. Niesz, D. Mehn, I. Kiricsi, End morphology of ball milled carbon nanotubes, Carbon 42 (2004) 2001-(2008).

DOI: 10.1016/j.carbon.2004.03.040

Google Scholar

[6] Y.Y. Huang, E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers 4 (2012), 275-295.

DOI: 10.3390/polym4010275

Google Scholar

[7] C.J. Kerr, Y.Y. Huang, J.E. Marshall, E.M. Terentjev, Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites, J. App. Phy. 109 (2011) 109-116.

DOI: 10.1063/1.3569596

Google Scholar

[8] S. Cui, R. Canet, A. Derre, M. Couzi, P. Delhaes, Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing, Carbon 41 (2003) 797-809.

DOI: 10.1016/s0008-6223(02)00405-0

Google Scholar

[9] M.L. Sham, J.K. Kim, Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments, Carbon 44 (2006) 768-777.

DOI: 10.1016/j.carbon.2005.09.013

Google Scholar

[10] X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mats. 12 (2000) 1049-1052.

DOI: 10.1021/cm9906396

Google Scholar

[11] R. Orru , R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mat. Sci. Eng. R, 63 (2000) 127–287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[12] W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of DC pulsing on reactivity, Mat. Sci. Eng. A 394 (2005) 132–138.

DOI: 10.1016/j.msea.2004.11.020

Google Scholar

[13] C. Suryanarayana, Mechanical alloying and milling, Prog. Mat. Sci. 46 (2001) 1-184.

Google Scholar

[14] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube–aluminum composites, Mat. Sci. Eng. A 508 (2009) 167-173.

DOI: 10.1016/j.msea.2009.01.002

Google Scholar

[15] F.H. Odae, K. Ameyama, Nano grain formation in tungsten by severe plastic deformation-mechanical milling process, Met. Mat. trans. A 49 (2008) 54.

DOI: 10.2320/matertrans.me200704

Google Scholar