Morphology of Si Phase in Al-Mg-Si-Cu Alloys with Excess Si Addition

Article Preview

Abstract:

The morphology of Si phase and its growth manner in the Al-Mg-Si-Cu alloys with amounts of excess silicon were investigated using by a combination of the higher magnification microstructure and DSC measurements. Solidification characteristics of the alloys were predicted by thermodynamic calculation and compared to the experimental results. It was found that addition of higher amount of excess silicon led to the formation of the evidently morphological Si phase, especially when the silicon content was beyond 1.35 wt.%. The Si phase was one of the dominant phases in the alloys and its reaction peak was identified with the onset temperature of 550.43oC in the DSC curves. These experimental results were in good agreement with the thermodynamic calculations by the Gulliver-Scheil model. Keywords: Al-Mg-Si-Cu alloy; morphology; thermodynamic calculation; excess Si

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

161-167

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.C. Yang, M.P. Wang, Y.L. Jia, R.R. Zhang, Studies of orientations of β' precipitates in Al-Mg-Si-(Cu) alloys by electron diffraction and transition matrix analysis, Metallurgical and materials transactions 42A (2011) 2917.

DOI: 10.1007/s11661-011-0680-5

Google Scholar

[2] A. Loucif, R.B. Figueiredo, T. Baudin, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion, Materials Science and Engineering 527A (2010) 4864.

DOI: 10.1016/j.msea.2010.04.027

Google Scholar

[3] S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy, Materials and Design 30 (2009) 1894.

DOI: 10.1016/j.matdes.2008.09.022

Google Scholar

[4] R. Braun, Investigation on Microstructure and Corrosion Behaviour of 6XXX Series Aluminium Alloys, Materials Science Forum 519-521 (2006) 735.

DOI: 10.4028/www.scientific.net/msf.519-521.735

Google Scholar

[5] C. Poletti, M. Rodriguez, M. Hauser, C. Sommitsch, Microstructure development in hot deformed AA6082, Materials Science and Engineering 528A (2011) 2423.

DOI: 10.1016/j.msea.2010.11.048

Google Scholar

[6] S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al-Mg-Si alloy with enhanced strength and ductility, Journal of Alloys and Compounds 470 (2009) 285.

DOI: 10.1016/j.jallcom.2008.02.028

Google Scholar

[7] D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, Effects of heat treatment on the microstructure and mechanical properties of a 6061 aluminium alloy, Materials Science and Engineering 528A (2011) 2718.

DOI: 10.1016/j.msea.2010.12.011

Google Scholar

[8] J.C. Huang, I.C. Hsiao, T.D. Wang, B.Y. Lou, EBSD study on grain boundary characteristics in fine-grained Al alloys, Scripta Materialia 43 (2000) 213.

DOI: 10.1016/s1359-6462(00)00393-6

Google Scholar

[9] C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system, Metallurgical and materials transactions 36A (2005) 691.

DOI: 10.1007/s11661-005-0185-1

Google Scholar

[10] G.K. Quainoo, S. Yannacopoulos, The effect of cold work on the precipitation kinetics of AA6111 aluminum, Journal of materials science 39 (2004) 6495.

DOI: 10.1023/b:jmsc.0000044888.01854.e1

Google Scholar

[11] R.S. Yassar, D.P. Field, H. Weiland, The effect of cold deformation on the kinetics of the β' precipitates in an Al-Mg-Si alloy, Metallurgical and materials transactions 36A (2005) (2059).

DOI: 10.1007/s11661-005-0326-6

Google Scholar

[12] M. Murayama, K. Hono, W.F. Miao, D.E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metallurgical and materials transactions 32A (2001) 239.

DOI: 10.1007/s11661-001-0254-z

Google Scholar

[13] A. Gaber, M.A. Gaffar, M.S. Mostafa, Precipitation kinetics of Al-1. 12 Mg2Si-0. 35 Si and Al-1. 07 Mg2Si-0. 33 Cu alloys, Journal of alloys and compounds 429 (2007) 167.

DOI: 10.1016/j.jallcom.2006.04.021

Google Scholar

[14] K.J. Matsuda, S. Ikeno, H. Matsui, T. Sato, Comparison of precipitates between excess Si-type and balanced-type Al-Mg-Si alloys during continuous heating, Metallurgical and materials transactions 36A (2005) (2012).

DOI: 10.1007/s11661-005-0321-y

Google Scholar

[15] D.G. Eskin, V. Massardier, P. Merle, A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon, Journal of materials science 34 (1999) 811.

Google Scholar

[16] X. Wang, S. Esmaeili, D.J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metallurgical and materials transactions 37A (2006) 2691.

DOI: 10.1007/bf02586103

Google Scholar

[17] P. Suwanpinij, U. Kitkamthorn, I. Diewwanit, T. Umeda, Influence of copper and iron on solidification characteristics of 356 and 380-type aluminum alloys, Materials Transactions 44 (2003) 845.

DOI: 10.2320/matertrans.44.845

Google Scholar

[18] Y Han, C.Y. Ban, H.T. Zhang, H. Nagaumi, Q.X. Ba, J.Z. Cui, Investigations on the solidification behavior of Al-Fe-Si alloy in an alternating magnetic field, Materials Transactions 47 (2006) (2092).

DOI: 10.2320/matertrans.47.2092

Google Scholar

[19] Y. Han, K. Ma, C.Y. Wang, H. Nagaumi, Precipitation behavior of dispersoids in Al-Mg-Si-Cu-Mn-Cr alloy during homogenization annealing, 13th International Conference on Aluminum Alloys, TMS Annual Meeting, (2012) 1817.

DOI: 10.1002/9781118495292.ch272

Google Scholar

[20] Y. Han, K. Ma, L. Li, W. Chen, H. Nagaumi, Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content, Materials and Design 39 (2012) 418.

DOI: 10.1016/j.matdes.2012.01.034

Google Scholar

[21] H. Nagaumi, S. Suzuki, T. Okane, T. Umeda, Effect of iron content on hot tearing of high-strength Al-Mg-Si alloy, Materials Transactions 47 (2006) 2821.

DOI: 10.2320/matertrans.47.2821

Google Scholar

[22] G. Sha, K.A.Q. O'Reilly, B. Cantor, J.M. Titchmarsh, R.G. Hamerton, Quasi-peritectic solidification reactions in 6xxx series wrought Al alloys, Acta Materialia 51 (2003) 1883.

DOI: 10.1016/s1359-6454(02)00595-5

Google Scholar

[23] C. Hsu, K.A.Q. O'Reilly, B. Cantor, R. Hamerton, Non-equilibrium reactions in 6xxx series Al alloys, Materials science and engineering 304-306A (2001) 119.

DOI: 10.1016/s0921-5093(00)01467-2

Google Scholar

[24] Y.L. Liu, S.B. Kang, The solidification process of Al-Mg-Si alloys, Journal of materials science 32 (1997) 1443.

Google Scholar