[1]
W.C. Yang, M.P. Wang, Y.L. Jia, R.R. Zhang, Studies of orientations of β' precipitates in Al-Mg-Si-(Cu) alloys by electron diffraction and transition matrix analysis, Metallurgical and materials transactions 42A (2011) 2917.
DOI: 10.1007/s11661-011-0680-5
Google Scholar
[2]
A. Loucif, R.B. Figueiredo, T. Baudin, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion, Materials Science and Engineering 527A (2010) 4864.
DOI: 10.1016/j.msea.2010.04.027
Google Scholar
[3]
S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy, Materials and Design 30 (2009) 1894.
DOI: 10.1016/j.matdes.2008.09.022
Google Scholar
[4]
R. Braun, Investigation on Microstructure and Corrosion Behaviour of 6XXX Series Aluminium Alloys, Materials Science Forum 519-521 (2006) 735.
DOI: 10.4028/www.scientific.net/msf.519-521.735
Google Scholar
[5]
C. Poletti, M. Rodriguez, M. Hauser, C. Sommitsch, Microstructure development in hot deformed AA6082, Materials Science and Engineering 528A (2011) 2423.
DOI: 10.1016/j.msea.2010.11.048
Google Scholar
[6]
S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al-Mg-Si alloy with enhanced strength and ductility, Journal of Alloys and Compounds 470 (2009) 285.
DOI: 10.1016/j.jallcom.2008.02.028
Google Scholar
[7]
D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, Effects of heat treatment on the microstructure and mechanical properties of a 6061 aluminium alloy, Materials Science and Engineering 528A (2011) 2718.
DOI: 10.1016/j.msea.2010.12.011
Google Scholar
[8]
J.C. Huang, I.C. Hsiao, T.D. Wang, B.Y. Lou, EBSD study on grain boundary characteristics in fine-grained Al alloys, Scripta Materialia 43 (2000) 213.
DOI: 10.1016/s1359-6462(00)00393-6
Google Scholar
[9]
C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system, Metallurgical and materials transactions 36A (2005) 691.
DOI: 10.1007/s11661-005-0185-1
Google Scholar
[10]
G.K. Quainoo, S. Yannacopoulos, The effect of cold work on the precipitation kinetics of AA6111 aluminum, Journal of materials science 39 (2004) 6495.
DOI: 10.1023/b:jmsc.0000044888.01854.e1
Google Scholar
[11]
R.S. Yassar, D.P. Field, H. Weiland, The effect of cold deformation on the kinetics of the β' precipitates in an Al-Mg-Si alloy, Metallurgical and materials transactions 36A (2005) (2059).
DOI: 10.1007/s11661-005-0326-6
Google Scholar
[12]
M. Murayama, K. Hono, W.F. Miao, D.E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metallurgical and materials transactions 32A (2001) 239.
DOI: 10.1007/s11661-001-0254-z
Google Scholar
[13]
A. Gaber, M.A. Gaffar, M.S. Mostafa, Precipitation kinetics of Al-1. 12 Mg2Si-0. 35 Si and Al-1. 07 Mg2Si-0. 33 Cu alloys, Journal of alloys and compounds 429 (2007) 167.
DOI: 10.1016/j.jallcom.2006.04.021
Google Scholar
[14]
K.J. Matsuda, S. Ikeno, H. Matsui, T. Sato, Comparison of precipitates between excess Si-type and balanced-type Al-Mg-Si alloys during continuous heating, Metallurgical and materials transactions 36A (2005) (2012).
DOI: 10.1007/s11661-005-0321-y
Google Scholar
[15]
D.G. Eskin, V. Massardier, P. Merle, A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon, Journal of materials science 34 (1999) 811.
Google Scholar
[16]
X. Wang, S. Esmaeili, D.J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metallurgical and materials transactions 37A (2006) 2691.
DOI: 10.1007/bf02586103
Google Scholar
[17]
P. Suwanpinij, U. Kitkamthorn, I. Diewwanit, T. Umeda, Influence of copper and iron on solidification characteristics of 356 and 380-type aluminum alloys, Materials Transactions 44 (2003) 845.
DOI: 10.2320/matertrans.44.845
Google Scholar
[18]
Y Han, C.Y. Ban, H.T. Zhang, H. Nagaumi, Q.X. Ba, J.Z. Cui, Investigations on the solidification behavior of Al-Fe-Si alloy in an alternating magnetic field, Materials Transactions 47 (2006) (2092).
DOI: 10.2320/matertrans.47.2092
Google Scholar
[19]
Y. Han, K. Ma, C.Y. Wang, H. Nagaumi, Precipitation behavior of dispersoids in Al-Mg-Si-Cu-Mn-Cr alloy during homogenization annealing, 13th International Conference on Aluminum Alloys, TMS Annual Meeting, (2012) 1817.
DOI: 10.1002/9781118495292.ch272
Google Scholar
[20]
Y. Han, K. Ma, L. Li, W. Chen, H. Nagaumi, Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content, Materials and Design 39 (2012) 418.
DOI: 10.1016/j.matdes.2012.01.034
Google Scholar
[21]
H. Nagaumi, S. Suzuki, T. Okane, T. Umeda, Effect of iron content on hot tearing of high-strength Al-Mg-Si alloy, Materials Transactions 47 (2006) 2821.
DOI: 10.2320/matertrans.47.2821
Google Scholar
[22]
G. Sha, K.A.Q. O'Reilly, B. Cantor, J.M. Titchmarsh, R.G. Hamerton, Quasi-peritectic solidification reactions in 6xxx series wrought Al alloys, Acta Materialia 51 (2003) 1883.
DOI: 10.1016/s1359-6454(02)00595-5
Google Scholar
[23]
C. Hsu, K.A.Q. O'Reilly, B. Cantor, R. Hamerton, Non-equilibrium reactions in 6xxx series Al alloys, Materials science and engineering 304-306A (2001) 119.
DOI: 10.1016/s0921-5093(00)01467-2
Google Scholar
[24]
Y.L. Liu, S.B. Kang, The solidification process of Al-Mg-Si alloys, Journal of materials science 32 (1997) 1443.
Google Scholar