Interfacial Magnetoelectric Switching in Multiferroic Heterostructures

Article Preview

Abstract:

Novel methods of switching magnetism with electric fields and vice versa, and aiming at magnetoelectric (ME) data processing are reported. First, the patented MERAM@ uses the electric field control of exchange bias via an epitaxial Cr2O3 layer and exchange coupling to a Pt/Co/Pt trilayer. It promises to crucially reduce Joule energy losses in RAM devices. Second, magnetic switching of the electric polarization by a transverse magnetic field in a 3-1 composite of a vertically poled BaTiO3 thick film embedding CoFe2O4 nanopillars produces a regular surface polarization pattern with rectangular symmetry. Its possible use for data processing is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1623-1627

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Curie, Sur la symétrie dans les phénomènes physiques, symérie d'un champ électrique et d'un champ magnétique, J. Physique 3 (1894) 393 – 415.

DOI: 10.1051/jphystap:018940030039300

Google Scholar

[2] C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M.F. de Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, and H. Wende, Electric in-plane polarization in multi-ferroic CoFe2O4/BaTiO3 nanocomposite tuned by magnetic fields, Nat. Commun. 4: 2051 doi: 10. 1038/ncomms3051 (2013).

DOI: 10.1038/ncomms3051

Google Scholar

[3] W. Kleemann, Viewpoint: Switching magnetism with electric fields, Physics 2 (2009) 105.

Google Scholar

[4] A. Hochstrat, X. Chen, P. Borisov, and W. Kleemann, Magnetoresistive element, in particular magnetoelectric memory element or logic element and method for writing information to such an element, U.S. Patent 7, 719, 883. B2 (2010).

Google Scholar

[5] X. Chen, A. Hochstrat, P. Borisov, and W. Kleemann, Magnetoelectric exchange bias systems in spintronics, Appl. Phys. Lett. 89 (2006) 202508.

DOI: 10.1063/1.2388149

Google Scholar

[6] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures, Science 303 (2004).

DOI: 10.1126/science.1094207

Google Scholar

[7] Xi He, Yi Wang, Ning Wu, A. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dowben, C. Binek, Robust isothermal electric control of exchange bias at room temperature, Nature Mater. 9 (2010) 579 – 585.

DOI: 10.1038/nmat2785

Google Scholar

[8] P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Magneto-electric switching of exchange bias, Phys. Rev. Lett. 94 (2005) 117203.

DOI: 10.1103/physrevlett.94.117203

Google Scholar

[9] M.N. Baibich et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61 (1988).

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[10] M. Budimir, D. Damjanovic, and N. Setter, Piezoelectric anisotropy–phase transition relations in perovskite single crystals, J. Appl. Phys. 94 (2003) 6753 – 6761.

DOI: 10.1063/1.1625080

Google Scholar

[11] T.J. Martin and J.C. Anderson, Antiferromagnetic domain switching in Cr2O3, IEEE Trans. Magn. 2 (1966) 466.

Google Scholar