Performance of an Anode-Supported Honeycomb Solid Oxide Fuel Cell

Article Preview

Abstract:

An anode-supported honeycomb solid oxide fuel cell can work with high power density and improve thermo-mechanical durability at high temperatures. We have thus fabricated the honeycomb cell with an electrolyte layer of 8YSZ on an anode honeycomb substrate of Ni/8YSZ. The cathode layer is LSM-YSZ composite. Current-voltage and current-power density characteristics of the cells having different anode and cathode flow channel configurations are measured under different hydrogen flow rates. We also evaluate the hydrogen mole fraction distributions in the honeycomb cell using finite element method, and discuss appropriate anode and cathode flow channel configurations. The present study is a starting point of developing an anode-supported honeycomb cell for cell stacks assembled with multiple and large scale honeycomb cells which can achieve high efficiency flow channel and current collecting configurations, and enhanced thermo-mechanical durability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1698-1703

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Ackerman, J.E. Young, U.S. Patent 4476198. (1984).

Google Scholar

[2] H. Zhong, H. Matsumoto, A. Toriyama, T. Ishihara, J. Electrochem. Soc. 156 (1) (2009) B74-B79.

Google Scholar

[3] Z. Wang, S. Shimizu, and Y. Yamazaki, J. Fuel Cell Sci. Tech., 5 (2008) 031211.

Google Scholar

[4] T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Electrochim. Acta, 54 (2009) 1478-1482.

Google Scholar

[5] J.C. Ruiz-Morales, D. Marrero-López, J. Peña-Martínez, J. Canales-Vázquez, J. Josep Roa, M. Segarra, S.N. Savvin, P. Núñez, J. Power Sources, 195 (2010) 516-521.

DOI: 10.1016/j.jpowsour.2009.08.017

Google Scholar

[6] A. Fukushima, H. Nakajima, T. Kitahara, ECS Trans., 50(48) (2013) 71-75.

Google Scholar

[7] H. Nakajima, T. Kitahara, T. Konomi, J. Electrochem. Soc., 157(11) (2010) B1686-B1692.

Google Scholar

[8] J-D. Kim, G-D. Kim, J-W. Moon, Y-i. Park, W-H. Lee, K. Kobayashi, M. Nagai, C-E. Kim, Solid State Ionics, 143 (2001) 379-389.

Google Scholar

[9] M. Andersson, J. Yuan, B. Sundén, ECS Trans., 25(2) (2009) 1201-1210.

Google Scholar