Enhanced Performance of Ag-Doped Oxygen Electrode Based Solid Oxide Electrolyser Cell under High Temperature Electrolysis of Steam

Article Preview

Abstract:

Solid oxide electrolyser (SOE) has been receiving increasing attention due to its potential applications in large-scale hydrogen production and carbon dioxide recycling for fuels. Improving the performance of SOE cell through oxygen electrode development has been of main interest because the major polarization loss of the SOE cell is at the oxygen electrode during high temperature electrolysis (HTE). In the present study, Ag was doped into (La0.75Sr0.25)0.95MnO3+δ(LSM) based oxygen electrode of Ni/YSZ cathode-supported SOE cell through a solid state method enhanced by ball milling. Short stacks were manufactured using doped and undoped cells and tested under HTE of steam at 800°C up to 150h for in situ comparative study of doping effect. The cells with doped oxygen electrodes showed less polarization loss, lower resistance and improved performance by comparison with the undoped cell. Post-mortem examination revealed Ag migrated from the current collecting layer to the electrolyte/anode interface, which may promote the cell performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1708-1713

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Brisse, J. Schefold, and M. Zahid: Int. J. Hydrog. Energy, 33 (2008) 5375.

Google Scholar

[2] S. C. Singhal: Solid State Ionics, 152-153 (2002) 405.

Google Scholar

[3] M.A. Laguna-Bercero: J Power Sources, 203 (2012) p.4.

Google Scholar

[4] S.D. Ebbesen, M. Mogensen, J. Power Sources 193 (2009) 349–358.

Google Scholar

[5] A.C. Lee, R.E. Mitchell, T.M. Gür, Solid State Ionics 192 (2011) 607–610.

Google Scholar

[6] A. Hauch, S.H. Jensen, S. Ramousse and M. Mogensen. J. Electrochem. Soc., 153 (2006) A1741.

DOI: 10.1149/1.2216562

Google Scholar

[7] O.A. Marina, L.R. Pederson, M.C. Williams, G.W. Coffey, K.D. Meinhardt, C.D. Nguyen, E.C. Thomsen, J. Electrochem. Soc. 154 (2007) B452.

DOI: 10.1149/1.2710209

Google Scholar

[8] J.R. Mawdsley, J.D. Carter, A.J. Kropf, B. Yildiz, V.A. Maroni, Int. J. Hydrogen Energy: 34 (2009) 4198–4207.

DOI: 10.1016/j.ijhydene.2008.07.061

Google Scholar

[9] M.A. Laguna-Bercero, R. Campana, A. Larrea, J.A. Kilner, V.M. Orera, J. Power Sources 196 (2011) 8942–8947.

DOI: 10.1016/j.jpowsour.2011.01.015

Google Scholar

[10] C. Bernuy-Lopez, R. Knibbe, Z. He, X. Mao, A. Hauch, K. A. Nielsen, J. Power Sources, 196 (2011) 4396.

DOI: 10.1016/j.jpowsour.2010.10.102

Google Scholar

[11] K.F. Chen, N. Ai, S.P. Jiang, Int J Hydrogen Energy, 37 (2012) 1301–1310.

Google Scholar

[12] P. Hjalmarsson, X. Sun, Y-L. Liu, M. Chen, J. Power Sources 223 (2013) 349-357.

Google Scholar

[13] T.J. Huang, X.D. Shen, C.L. Chou:J. Power Sources, 187 (2009) 348–335.

Google Scholar

[14] A. Salehi-Khojin, H-R. Jhong, B.A. Rosen, W. Zhu, S. Ma, P. Kenis, R.I. Masel, J. Phys. Chem. C 117 (2013) 1627-1632.

DOI: 10.1021/jp310509z

Google Scholar

[15] T.S. Li, H. Miao, T. Chen, W.G. Wang, C. Xu, J. Electrochem. Soc. 156 (2009) B1383.

Google Scholar

[16] L. Jin, W.B. Guan, J.Q. Niu, X. Ma, W.G. Wang, J. Power Sources 240 (2013) 796-805.

Google Scholar

[17] L. Jin, W. Guan, X. Ma, et al., ECS Trans, 41 (2012) 103–111.

Google Scholar

[18] R. Barfod, A. Hagen, S. Ramousse, P. V. Hendriksen, and M. Mogensen, Fuel Cells, 6 ( 2006) 141-145.

DOI: 10.1002/fuce.200500113

Google Scholar

[19] A.V. Virkar, Int. J. Hydrogen Energy, 35 (2010) 9527-9543.

Google Scholar