Warm Rolling Technique for Amorphous Alloy Strip Produced by Ultrarapid Cooling-Thermal Spraying Based on Hydraulic-Stress-Induced Structural Relaxation

Article Preview

Abstract:

Amorphous alloys have many superior properties such as high tensile strength,anticorrosion and easy soft-magnetism, but few amorphous alloys have been used as final productsbecause they lack plasticity at room temperature. Thus, we have developed a new amorphous alloyrolling method. Although the amorphous alloy was brittle at room temperature, it has deformedplastically by semisolid rolling under hydraulic stress. After being subjected to ultrarapidcooling-thermal spraying, amorphous alloy strips were rolled with a ditch roll in the viscoelasticregion below the glass transition temperature. Using this rolling method, we successfully preformedstrips for use in fuel cell separator. This rolling technique is based on the principle of stress-inducedstructural relaxation under hydraulic stress.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1920-1924

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yanagimoto, Jounal of the Japan Society for Technology of Plasticity 52(2011)108-112.

Google Scholar

[2] C. Janot J.F. Geny,G. Marchal, Revue de Metallurgie 78 (1981) 811-821.

Google Scholar

[3] A. Inoue: Material Science and Engineering of Bulk Metallic Glasses, CMC, Tokyo, (2008).

Google Scholar

[4] K. Fujita,Y. Mitzu and T. Yamasaki: Jounal of Japan Inst. Metals 75(2011) 348-354.

Google Scholar

[5] Liquidmetal Technologies, US patent (2006) 7017645.

Google Scholar

[6] H. Hubert,F. Blein,J. Blot,M. Jeandin, Revue de Metallurgie 97 (2000)1519-1524.

Google Scholar

[7] R. Kurahashi,M. Komaki,N. Nagao,K. Hakomori, M Kozaki,A. Yanagitani, Revue de Metallurgie 105 (2008) 575-583.

DOI: 10.1051/metal:2008074

Google Scholar

[8] R. Kurahashi,T. Mimura,K. Amiya,Y. Saotome, Japan patent (2011) 112109.

Google Scholar

[9] J. Yanagimoto,T. Morimoto,R. Kurahashi,I. Chikushi, Steel Reseearch 73(2002) 56-62.

Google Scholar

[10] J.L. Chenot, Revue de Metallurgie 90(1993)1567-1676.

Google Scholar

[11] Wang Z.J. Qi,L.H., Zhou J.M., Journal of Materials Processing Technology, 209(2009) 2068-(2076).

Google Scholar

[12] Y. Yokoyama,K. Yamano,S. Furuahra,H. Sunada, A. Inoue, Mater. Trans., 42(2001) 623-632.

Google Scholar

[13] T. Saito,K. Miyaki,Y. Kamimura,K. Edagawa,S. Takeuchi, Mater. Trans., 46(2005) 369-371.

DOI: 10.2320/matertrans.46.369

Google Scholar

[14] S. Yamanaka,K. Amiya,Y. Saotome and A. Inoue : Mater. Trans., 52(2011) 243-249.

Google Scholar

[15] H.S. Chen,H. Kato,A. Inoue: Jpn.J. Appl. Phys. 39(2000) 1808-1811.

Google Scholar

[16] H. Kato,Y. Kawamura,A. Inoue H.S. Chen, Mater. Trans., 41(2000) 1202-1207.

Google Scholar

[17] P.W. Bridgman,J. Appl. Phys. 18(1947) 246-254.

Google Scholar

[18] M. Ohtone, Journal of the Japan Society of Mechanical Engineers, 75(1972) 596-601.

Google Scholar

[19] H. Takuda,H. Fujimoto.Y. Kuroda,N. Hatta, Steel Research, 68(1997) 398-402.

Google Scholar

[20] T. Furuakwa,Y. Maeoka,C. Inaba,T. Tokuda, Journal of The Society of Materials Science, 59(2010) 110-117.

Google Scholar

[21] Y. Kawamura,T. Shibata,A. Inoue,T. Masumoto, Appl. Phys. Lett. 69(1996) 1208-1215.

Google Scholar

[22] W.K. Wang, Mater. Trans., 42(2001) 606-612.

Google Scholar

[23] L. Sun,Q. Wu,L. Wang, Y. Yao, D. Dai,J. Zhang,W. Wang, Mater. Trans., 42(2001) 579-582.

Google Scholar

[24] W.J. Wright,R. Saha W.D. Nix, Mater. Trans., 42(2001) 642-649.

Google Scholar