Monolithic Nanoporous Copper with Novel Electrochemical Properties Fabricated by Dealloying Cu-Zr(-Al) Metallic Glasses

Article Preview

Abstract:

Monolithic uniform nanoporous Cu (NPC) ribbons with a ligament/pore size of 10-25 nm are successfully synthesized by chemical dealloying the Cu50Zr50 and Cu50Zr45Al5 metallic glasses in 0.5 M HF for 7 min. It is found that the length scale of ligaments/channels can be tuned by simply alloying 5 at.% Al to the Cu-Zr binary glassy alloys. The current signal of the NPC-supported MnO2 composite electrode is remarkably enhanced as compared to that of pure MnO2 powders. These new findings greatly raise the hope for possible applications of NPC as a new type of electrode substrates or an advanced sensor in green and new energy technology.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1925-1930

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.C. Bond, D.T. Thompson, Catalysis by gold, Catal. Rev. Sci. Eng. 41 (1999) 319-388.

Google Scholar

[2] S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412 (2001) 169-172.

DOI: 10.1038/35084046

Google Scholar

[3] T. Aburada, J.M. Fitz-Gerald, J.R. Scully, Synthesis of nanoporous copper by dealloying of Al–Cu–Mg amorphous alloys in acidic solution: The effect of nickel, Corros. Sci. 53 (2011) 1627-1632.

DOI: 10.1016/j.corsci.2011.01.033

Google Scholar

[4] J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen, Nanoporous metals by dealloying multicomponent metallic glasses, Chem. Mater. 20 (2008) 4548-4550.

DOI: 10.1021/cm8009644

Google Scholar

[5] X.K. Luo, R. Li, Z.Q. Liu, L. Huang, M.J. Shi, T. Xu, T. Zhang, Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses, Mater. Lett. 76 (2012) 96-99.

DOI: 10.1016/j.matlet.2012.02.028

Google Scholar

[6] Z.H. Dan, F.X. Qin, Y. Sugawara, I. Muto, A. Makino, N. Hara, Nickel-stabilized nanoporous copper fabricated from ternary TiCuNi amorphous alloys, Mater. Lett. 94 (2013) 128-131.

DOI: 10.1016/j.matlet.2012.12.028

Google Scholar

[7] Y. Ding, A. Mathur, M.W. Chen, J. Erlebacher, Epitaxial casting of nanotubular mesoporous platinum, Angew. Chem. Int. Edit. 44 (2005) 4002-4006.

DOI: 10.1002/anie.200463106

Google Scholar

[8] Z.H. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying, J. Phys. Chem. C 113 (2009) 12629-12636.

DOI: 10.1021/jp811445a

Google Scholar

[9] D.V. Pugh, A. Dursun, S.G. Corcoran, Electrochemical and morphological characterization of Pt–Cu dealloying, J. Electrochem. Soc. 152 (2005) B455-B459.

DOI: 10.1149/1.2048140

Google Scholar

[10] L.Y. Chen, J.S. Yu, T. Fujita, M.W. Chen, Nanoporous copper with tunable nanoporosity for SERS applications, Adv. Funct. Mater. 19 (2009) 1221-1226.

DOI: 10.1002/adfm.200801239

Google Scholar

[11] W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, Y.L. Xing, Dealloying behavior of dual-phase Al 40 atom % Cu alloy in an alkaline solution, J. Electrochem. Soc. 158 (2011) D91-D94.

DOI: 10.1149/1.3511771

Google Scholar

[12] C.C. Zhao, X.G. Wang, Z. Qi, H. Ji, Z.H. Zhang, On the electrochemical dealloying of Mg–Cu alloys in a NaCl aqueous solution, Corros. Sci. 52 (2010) 3962-3972.

DOI: 10.1016/j.corsci.2010.08.005

Google Scholar

[13] R. Mao, S.H. Liang, X.H. Wang, Q. Yang, B.B. Han, Effect of preparation conditions on morphology and thermal stability of nanoporous copper, Corros. Sci. 60 (2012) 231-237.

DOI: 10.1016/j.corsci.2012.03.032

Google Scholar

[14] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[15] A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari, A.L. Greer, Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass, Philos. Mag. Lett. 85 (2005) 221-237.

DOI: 10.1080/09500830500197724

Google Scholar

[16] A. Inoue, W. Zhang, Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys, Mater. Trans. 43 (2002) 2921-2925.

DOI: 10.2320/matertrans.43.2921

Google Scholar

[17] H.B. Lu, Y. Li, F.H. Wang, Synthesis of porous copper from nanocrystalline two-phase Cu–Zr film by dealloying, Scripta Mater. 56 (2007) 165-168.

DOI: 10.1016/j.scriptamat.2006.09.009

Google Scholar

[18] W. Zhang, C.L. Qin, X. Zhang, A. Inoue, Effects of additional noble elements on the thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys, Mater. Sci. Eng. A 449-451 (2007) 631-635.

DOI: 10.1016/j.msea.2006.02.343

Google Scholar

[19] V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B.Q. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, J. Phys. Chem. B 109 (2005) 20207-20214.

DOI: 10.1021/jp0543330

Google Scholar