Cu Particulates Dispersed Bulk Metallic Glass Composites with High Strength and High Electrical Conductivity Fabricated by Spark Plasma Sintering

Article Preview

Abstract:

Using the mixed powders containing gas-atomized powders of metallic glassy alloys (Cu50Zr45Al5, Fe73Si7B17Nb3, Ni52.5Nb10Zr15Ti15Pt7.5) blended with high-conductive Cu particulates, we produced bulk metallic glassy alloy composites with high strength and high electrical conductivity, as well as with enhanced plasticity and satisfying large size requirements by a spark plasma sintering process. In this paper we present and review our research results on the fabrication and properties of the bulk glassy alloy composites by the spark plasma sintering process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1961-1966

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, Acta Mater. 48 (2000) 279-306.

Google Scholar

[2] W.L. Johnson, MRS Bull. 24(10) (1999) 42-56.

Google Scholar

[3] A.L. Greer, Science 267 (1995) 1947-(1953).

Google Scholar

[4] H.A. Bruck, A.J. Rosakis, W.L. Johnson, J. Mater. Res. 11 (1996) 503-511.

Google Scholar

[5] G.Q. Xie, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, Intermetallics 18 (2010) 851-858.

Google Scholar

[6] G.Q. Xie, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, F. Wakai, Appl. Phys. Lett. 92 (2008) 121907.

DOI: 10.1063/1.2902282

Google Scholar

[7] H. Kato, K. Yubuta, D.V. Louzguine, A. Inoue, H.S. Kim, Scripta Mater. 51 (2004) 577-581.

Google Scholar

[8] C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84 (2000) 2901-2904.

Google Scholar

[9] J. Eckert, M. Seidel, A. Kübler, U. Klement, L. Schultz, Scripta Mater. 38 (1998) 595-602.

Google Scholar

[10] G.Q. Xie, W. Zhang, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, Scripta Mater. 55 (2006) 687-690.

Google Scholar

[11] G.Q. Xie, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, Appl. Phys. Lett. 90 (2007) 241902.

Google Scholar

[12] V. Mamedov, Powder Metall. 45 (2002) 322-328.

Google Scholar

[13] M. Tokita, Mater. Sci. Forum 308-311 (1999) 83-88.

Google Scholar

[14] M. Omori, Mater. Sci. Eng. A 287 (2000) 183-188.

Google Scholar

[15] M.A. Howson, B.L. Gallagher, Phys. Rep. 170 (1988) 265-324.

Google Scholar

[16] H.J. Jin, F. Zhou, L.B. Wang, K. Lu, Scripta Mater. 44 (2001) 1083-1087.

Google Scholar

[17] Y.K. Kuo, K.M. Sivakumar, C.A. Su, C.N. Ku, S.T. Lin, A.B. Kaiser, J.B. Qiang, Q. Wang, C. Dong, Phys. Rev. B 74 (2006) 014208.

Google Scholar

[18] G.Q. Xie, D.V. Louzguine-Luzgin, M. Fukuhara, H. Kimura, A. Inoue, Mater. Sci. Forum 654-656 (2010) 1086-1089.

DOI: 10.4028/www.scientific.net/msf.654-656.1086

Google Scholar

[19] G.Q. Xie, H. Kimura, D.V. Louzguine-Luzgin, H. Men, A. Inoue, Intermetallics 20 (2012) 76-81.

Google Scholar

[20] G.Q. Xie, O. Ohashi, M. Song, K. Furuya, T. Noda, Metall. Mater. Trans. A 34 (2003) 699-703.

Google Scholar

[21] G.Q. Xie, D.V. Louzguine-Luzgin, M. Fukuhara, H. Kimura, A. Inoue, Intermetallics 18 (2010) 1973-(1977).

DOI: 10.1016/j.intermet.2010.02.043

Google Scholar

[22] G.Q. Xie, D.V. Louzguine-Luzgin, M. Fukuhara, A. Inoue, Mater. Sci. Forum 675-677 (2011) 197-200.

Google Scholar

[23] H. Choi-Yim, R. Busch, U. Köster, W.L. Johnson, Acta Mater. 47 (1999) 2455-2462.

Google Scholar

[24] C. Fan, H. Li, L.J. Kecskes, K. Tao, H. Choo, P.K. Liew, C.T. Liu, Phys. Rev. Lett. 96 (2006) 145506.

Google Scholar

[25] D.S. Mclachlan, M. Blaszkiewicz, R.E. Newnham, J. Am. Ceram. Soc. 73 (1990) 2187-2203.

Google Scholar

[26] K. Wang, T. Fujita, M.W. Chen, T.G. Nieh, H. Okada, K. Koyama, W. Zhang, A. Inoue, Appl. Phys. Lett. 91 (2007) 154101.

DOI: 10.1063/1.2795800

Google Scholar