Comparative Analysis by the Newton Method of New Constitutive Strain Dependent Creep Equations Based on the Garofalo Equation

Article Preview

Abstract:

The improvement of optimization numerical methods for constitutive equations has been the first aim of this research. A subordinate optimization algorithm, based on Newton method, through “ad hoc” assessment, has been developed. Application to hot torsion data of AISI4145 with two grain sizes has been carried out. It is concluded that the Newton method is an excellent algorithm for the optimization of strain dependent constitutive equations. Two models are presented as alternative to the generalized Garofalo model: the normalized stress exponent model (NSE) and the Generalized Sherby model (SG). The NSE model is the most precise to restitute the experimental stress-strain curves.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2136-2141

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Rieiro, M. Carsí, F. Peñalba, Propuesta de un método de ordenador para resolver el ajuste a la ecuación de Zener-Hollomon (Garofalo), Rev. Metal. Madrid 32 (1996) 321-328.

DOI: 10.3989/revmetalm.1996.v32.i5.898

Google Scholar

[2] R. Ebrahimi, S. Zahiri, A. Najafizadeh, Mathematical modeling of stress-strain curve of Ti-IF steel at high temperature, J. Mater. Process. Technol. 171 (2006) 301-305.

DOI: 10.1016/j.jmatprotec.2005.06.072

Google Scholar

[3] J.A. Infante del Rio, J.M. Rey Cabezas, Métodos Numéricos, Ed. Pirámide, (2002).

Google Scholar

[4] J.H. Mathews, K.D. Fink, Métodos Numéricos con Matlab, Pearson Education, (2007).

Google Scholar

[5] I. Rieiro, V. Gutierrez, J. Castellanos, M. Carsi, M.T. Larrea, O.A. Ruano, A New constitutive strain-dependent Garofalo equation to describe the high temperature processing of materials application to the AZ31 magnesium alloy, Metall. Mater. Trans. A 41 (2010).

DOI: 10.1007/s11661-010-0259-6

Google Scholar

[6] V. Gutierrez, Master Fisymat, UCLM (2009).

Google Scholar

[7] A.R. Gallant A, Univariate nonlinear regression, in: Nonlinear Statistical Models, John Wiley & Sons, New York, (1986).

Google Scholar

[8] N. Draper, H. Smith, Applied Regression Analysis, John Wiley, New York, 1966, pp.282-284.

Google Scholar

[9] D. Cline, P.M. Lesser, Error estimation in non-linear least squares analysis of data, Nuclear Instrum. Methods 82 (1970) 291-293.

DOI: 10.1016/0029-554x(70)90366-6

Google Scholar

[10] D. Rogers, Analytic and graphical methods for assigning errors to parameters in non-linear least squares fitting, Nuclear Instrum. Methods, 127 (1975) 253-260.

DOI: 10.1016/0029-554x(75)90496-6

Google Scholar

[11] L. Meites, N. Fanelli, P. Papoff, The dependence of the variances of the parameters in non-linear regression analysis on the number of data points, Analytical Chemical Acta, 200 (1987) 387-396.

DOI: 10.1016/s0003-2670(00)83785-x

Google Scholar

[12] P. Archer, W. Prestwich, G. Keech, The determination of non-linear parameters and their standard deviations from the least-squares residuals, Nuclear Instrum. Methods 44 (1966) 114-118.

DOI: 10.1016/0029-554x(66)90443-5

Google Scholar

[13] F. Wang, Q. Zhu, J. Li, T.A. Dean, Prediction of microstructural evolution in hot rolling, J. Mater. Process Technol. 177 (2006) 530-533.

Google Scholar

[14] Z. Gronostajski, The constitutive equations for FEM analysis, J. Mater. Process. Technol. 106 (2000) 40-44.

Google Scholar

[15] I. Rieiro, Estudio y resolución de la ecuación fenomenológica de Garofalo para la fluencia plástica en estado estacionario de materiales metálicos policristalinos, Ph D thesis, Universidad Complutense de Madrid, Madrid, Spain, (1997).

DOI: 10.3989/revmetalm.1998.v34.iextra.771

Google Scholar

[16] V. Gutiérrez, Modelización y optimización de nuevas ecuaciones constitutivas para la fluencia plástica de materiales metálicos policristalinos, Ph D thesis, Universidad de Castilla La Mancha, Toledo, Spain, (2013).

DOI: 10.3989/revmetalm.1323

Google Scholar