[1]
I. Rieiro, M. Carsí, F. Peñalba, Propuesta de un método de ordenador para resolver el ajuste a la ecuación de Zener-Hollomon (Garofalo), Rev. Metal. Madrid 32 (1996) 321-328.
DOI: 10.3989/revmetalm.1996.v32.i5.898
Google Scholar
[2]
R. Ebrahimi, S. Zahiri, A. Najafizadeh, Mathematical modeling of stress-strain curve of Ti-IF steel at high temperature, J. Mater. Process. Technol. 171 (2006) 301-305.
DOI: 10.1016/j.jmatprotec.2005.06.072
Google Scholar
[3]
J.A. Infante del Rio, J.M. Rey Cabezas, Métodos Numéricos, Ed. Pirámide, (2002).
Google Scholar
[4]
J.H. Mathews, K.D. Fink, Métodos Numéricos con Matlab, Pearson Education, (2007).
Google Scholar
[5]
I. Rieiro, V. Gutierrez, J. Castellanos, M. Carsi, M.T. Larrea, O.A. Ruano, A New constitutive strain-dependent Garofalo equation to describe the high temperature processing of materials application to the AZ31 magnesium alloy, Metall. Mater. Trans. A 41 (2010).
DOI: 10.1007/s11661-010-0259-6
Google Scholar
[6]
V. Gutierrez, Master Fisymat, UCLM (2009).
Google Scholar
[7]
A.R. Gallant A, Univariate nonlinear regression, in: Nonlinear Statistical Models, John Wiley & Sons, New York, (1986).
Google Scholar
[8]
N. Draper, H. Smith, Applied Regression Analysis, John Wiley, New York, 1966, pp.282-284.
Google Scholar
[9]
D. Cline, P.M. Lesser, Error estimation in non-linear least squares analysis of data, Nuclear Instrum. Methods 82 (1970) 291-293.
DOI: 10.1016/0029-554x(70)90366-6
Google Scholar
[10]
D. Rogers, Analytic and graphical methods for assigning errors to parameters in non-linear least squares fitting, Nuclear Instrum. Methods, 127 (1975) 253-260.
DOI: 10.1016/0029-554x(75)90496-6
Google Scholar
[11]
L. Meites, N. Fanelli, P. Papoff, The dependence of the variances of the parameters in non-linear regression analysis on the number of data points, Analytical Chemical Acta, 200 (1987) 387-396.
DOI: 10.1016/s0003-2670(00)83785-x
Google Scholar
[12]
P. Archer, W. Prestwich, G. Keech, The determination of non-linear parameters and their standard deviations from the least-squares residuals, Nuclear Instrum. Methods 44 (1966) 114-118.
DOI: 10.1016/0029-554x(66)90443-5
Google Scholar
[13]
F. Wang, Q. Zhu, J. Li, T.A. Dean, Prediction of microstructural evolution in hot rolling, J. Mater. Process Technol. 177 (2006) 530-533.
Google Scholar
[14]
Z. Gronostajski, The constitutive equations for FEM analysis, J. Mater. Process. Technol. 106 (2000) 40-44.
Google Scholar
[15]
I. Rieiro, Estudio y resolución de la ecuación fenomenológica de Garofalo para la fluencia plástica en estado estacionario de materiales metálicos policristalinos, Ph D thesis, Universidad Complutense de Madrid, Madrid, Spain, (1997).
DOI: 10.3989/revmetalm.1998.v34.iextra.771
Google Scholar
[16]
V. Gutiérrez, Modelización y optimización de nuevas ecuaciones constitutivas para la fluencia plástica de materiales metálicos policristalinos, Ph D thesis, Universidad de Castilla La Mancha, Toledo, Spain, (2013).
DOI: 10.3989/revmetalm.1323
Google Scholar