[1]
J. Allison, D. Backman, L. Christodoulou, Integrated computational materials engineering: A new paradigm for the global materials profession, JOM 58(11) (2006) 25-27.
DOI: 10.1007/s11837-006-0223-5
Google Scholar
[2]
D.L. McDowell, Simulation-assisted materials design for the concurrent design of materials and products, JOM 59(9) (2009) 21-25.
DOI: 10.1007/s11837-007-0111-7
Google Scholar
[3]
D. Apelian, Integrated Computational Materials Engineering (ICME): A model" for the future, JOM 60(7) (2008) 9-10.
DOI: 10.1007/s11837-008-0081-4
Google Scholar
[4]
J. Allison, Integrated computational materials engineering: A perspective on progress and future steps, JOM 63(4) (2011) 15-18.
DOI: 10.1007/s11837-011-0053-y
Google Scholar
[5]
C.J. Kuehmann, G.B. Olson, Computational materials design and engineering, Materials Science and Technology 25(4) (2009) 472-478.
DOI: 10.1179/174328408x371967
Google Scholar
[6]
D. Furrer, J. Schirra, The development of the ICME supply-chain: route to ICME implementation and sustainment, JOM 64(4) (2011) 42-48.
DOI: 10.1007/s11837-011-0058-6
Google Scholar
[7]
J.H. Panchal, S.R. Kalidini, D.L. McDowell, Key computational modeling issues in Integrated Computational Materials Engineering, Computer-Aided Design 45 (2013) 4-25.
DOI: 10.1016/j.cad.2012.06.006
Google Scholar
[8]
V. Rothová, M. Svoboda, J. Buršík, The effect of annealing conditions on grain growth and microstructure of nickel, in: Metal 2009 Conference Proceedings, 473.
Google Scholar
[9]
P. Nash, M.F. Singleton, J.L. Murray, Al-Ni (Aluminum-Nickel), in: Phase Diagrams of Binary Nickel Alloys, P. Nash, ed., ASM International, Materials Park, OH, 1991, 3-11.
Google Scholar
[10]
F. Tancret, M. Bellini, Properties, processability and weldability of a novel affordable creep resistant nickel base superalloy, Materials Science and Technology 24(4) (2008) 479-487.
DOI: 10.1179/174328408x295999
Google Scholar
[11]
Q.H. Bui, G. Dirras, S. Ramtani, J. Gubicza, On the strengthening behavior of ultrafine-grained nickel processed from nanopowders, Materials Science and Engineering A 527 (2010) 3227-3235.
DOI: 10.1016/j.msea.2010.02.003
Google Scholar
[12]
M. Marty, A. Walder, C. Diot, Influence of solid solution strengthening elements on the properties of P/M nickel base alloys, in: Proceedings of International Conference on PM Aerospace Materials, MPR Publishing Services Ltd., England, 1987, p.10.
Google Scholar
[13]
F. Tancret, T. Sourmail, M.A. Yescas, R.W. Evans, C. McAleese, L. Singh, T. Smeeton, H.K.D.H. Bhadeshia, Design of a creep resistant nickel base superalloy for power plant applications: Part 3 - Experimental results, Materials Science and Technology 19(3) (2003).
DOI: 10.1179/026708303225009805
Google Scholar
[14]
H.K.D.H. Bhadeshia, Neural Networks in Materials Science, ISIJ International 39(10) (1999) 966-979.
DOI: 10.2355/isijinternational.39.966
Google Scholar
[15]
F. Tancret, H.K.D.H. Bhadeshia, D.J.C. MacKay, Comparison of artificial neural networks with gaussian processes to model the yield strength of nickel-base superalloys, ISIJ International 39(10) (1999) 1020-1026.
DOI: 10.2355/isijinternational.39.1020
Google Scholar
[16]
F. Tancret, H.K.D.H. Bhadeshia, D.J.C. MacKay, Design of a creep resistant nickel base superalloy for power plant applications: Part 1 - Mechanical properties modelling, Materials Science and Technology 19(3) (2003) 283-290.
DOI: 10.1179/026708303225009788
Google Scholar
[17]
M. Mahfouf, M. Jamei, D.A. Linkens, Optimal design of alloy steels using multiobjective genetic algorithms. Materials and Manufacturing Processes 20 (2005) 553-567.
DOI: 10.1081/amp-200053580
Google Scholar
[18]
S. Ganguly, S. Datta, N. Chakraborti, Genetic algorithms in optimization of strength and ductility of low-carbon steels, Materials and Manufacturing Processes 22 (2007) 650-658.
DOI: 10.1080/10426910701323607
Google Scholar
[19]
M. Joo, J. Ryu, H.K.D.H. Bhadeshia, Domains of steels with identical properties, Materials and Manufacturing Processes 24 (2009) 53-58.
DOI: 10.1080/10426910802543657
Google Scholar
[20]
F. Tancret, Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys, Modelling and Simulation in Materials Science and Engineering 21 (2013) 045013 (9pp).
DOI: 10.1088/0965-0393/21/4/045013
Google Scholar