[1]
J.A. Benito, J.M. Manero, J. Jorba, A. Roca, Change of Young's modulus of cold deformed pure iron in a tensile test, Metall. Mat. Trans. A, 36A (2005) 3317-3324.
DOI: 10.1007/s11661-005-0006-6
Google Scholar
[2]
A. Taherizadeh, A. Ghaei, D.E. Green, W.J. Altenhof, Finite element simulation of springback for a channel draw process with drawbead using different hardening models, Int. J. Mech. Sci., 51, 4 (2009), 314-325.
DOI: 10.1016/j.ijmecsci.2009.03.001
Google Scholar
[3]
H.Y. Yu, Variation of elastic modulus during plastic deformation and its influence on springback, Mat. Design, 30, 3 (2009) 846-850.
DOI: 10.1016/j.matdes.2008.05.064
Google Scholar
[4]
K. Yamaguchi, H. Adachi, N. Takakura, Effects of plastic strain path on Young's modulus of sheet metals, Met. Mat. 4, 3 (1998) 420-425.
DOI: 10.1007/bf03187802
Google Scholar
[5]
J.A. Benito, J. Jorba, A. Roca, Change of elastic constants of pure iron deformed by cold rolling, Mater. Sci. Forum, 426-432 (2003) 4435-4440.
DOI: 10.4028/www.scientific.net/msf.426-432.4435
Google Scholar
[6]
F. Morestin, M. Boivin, On the necessity of taking into account the variation in the Young's modulus with plastic strain in elastic-plastic software, Nucl. Eng. Design, 162, (1996) 107-116.
DOI: 10.1016/0029-5493(95)01123-4
Google Scholar
[7]
J. Jorba, R. Pons, J.A. Benito, A. Roca, Change of elastic constants of pure iron and stainless steel deformed by drawing, Special Issue J. Mater. Processing Technol. 117, 3 (2001) Proc. Thermec 2000, NV, CD ROM.
Google Scholar
[8]
M. Lucena, J.A. Benito, A. Roca, J. Jorba, Changes of elastomechanic constants of pure aluminum cold deformed by tension test, Rev Metal Madrid, 34 (1998), 310-313.
Google Scholar
[9]
I. Isarn: Master Thesis, Changes on the pure aluminum stifness cold deformed by tension test and its evolution with time, Universitat de Barcelona, Barcelona, Spain, (2012).
Google Scholar
[10]
A. Villuendas, J. Jorba, A. Roca, The Role of Precipitates in the Behavior of Young's Modulus in Aluminum Alloys: submitted to Metallurgical and Materials Transactions A (2013).
DOI: 10.1007/s11661-014-2328-8
Google Scholar
[11]
A. Villuendas, A. Roca, J. Jorba, Change of Young's modulus of cold-deformed aluminum AA1050 and of AA2024 (T65): A comparative study, Mater. Sci. Forum, 539-543 (2007) 293-298.
DOI: 10.4028/www.scientific.net/msf.539-543.293
Google Scholar
[12]
N.F. Mott, A theory of work-hardening of metal crystals, Phil. Mag., 43, 346 (1952) 1151-1178.
Google Scholar
[13]
G.E. Fugere, L. Riester, M. Ferber, J.R. Wertman, R.W. Siegel, Young's modulus of nanocrystalline Fe measured by nanoindentation, Mat. Sci. and Eng. A, 204 (1995) 1-6.
Google Scholar
[14]
T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. pharr, On the elastic moduli of nanocrystalline Fe, Cu and Cu-Ni alloys prepared by mechanical milling/alloying, J. Mater. Res. 10, 11 (1995) 2892-2896.
DOI: 10.1557/jmr.1995.2892
Google Scholar
[15]
A. Roca, J. Llumà, J. Jorba, N. Llorca-Isern, Measurements of elastic constants on nanostructured iron and copper, Mater. Sci. Forum, 638-642 (2010) 1772-1777.
DOI: 10.4028/www.scientific.net/msf.638-642.1772
Google Scholar
[16]
N. Llorca-Isern, C. Artieda. Private Communication (2013).
Google Scholar
[17]
Y.L. Liu, Y.X. Zhu, W.O. Dong, H. Yang, Springback prediction model considering the variable Young's modulus for the bending rectangular 3A21 tube, J. Mater. Eng. Perform., 22, 1 (2013) 9-16.
DOI: 10.1007/s11665-012-0227-y
Google Scholar