[1]
G. Frommeyer, U. Brüx, K. Brokmeier, R. Rablbauer, Development, microstructure and properties of advanced high-strength and supraductile light-weight steels based on Fe-Mn-Al-Si-(C), Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec'2009, Berlin, 2009, 162.
DOI: 10.1002/srin.200606440
Google Scholar
[2]
G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.
DOI: 10.2355/isijinternational.43.438
Google Scholar
[3]
O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application, International Journal of Plasticity 16 (2000) 1391-1409.
DOI: 10.1016/s0749-6419(00)00015-2
Google Scholar
[4]
L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 299-304.
DOI: 10.1016/j.acme.2012.06.016
Google Scholar
[5]
L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706/709 (2012) 2053-(2058).
DOI: 10.4028/www.scientific.net/msf.706-709.2053
Google Scholar
[6]
L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.
DOI: 10.4028/www.scientific.net/msf.654-656.266
Google Scholar
[7]
A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.
DOI: 10.1016/s1644-9665(12)60119-8
Google Scholar
[8]
L.A. Dobrzański, W. Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46 (1) (2011) 71-78.
Google Scholar
[9]
L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.
DOI: 10.4028/www.scientific.net/msf.638-642.3224
Google Scholar
[10]
U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, A. Weise, Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels, Steel Research 73 (2002) 294-298.
DOI: 10.1002/srin.200200211
Google Scholar
[11]
J. Kliber, T. Kursa, I. Schindler, The influence of hot rolling on mechanical properties of high-Mn TWIP steels, Proceedings of the 3rd International Conference on Thermo-mechanical Processing of Steels - TMP'2008, Padua, 2008 (CD-ROM).
Google Scholar
[12]
O. Kwon, K. Lee, G. Kim, K. Chin, New trends in advanced high strength steel developments for automotive application, Materials Science Forum 638-642 (2010) 136-141.
DOI: 10.4028/www.scientific.net/msf.638-642.136
Google Scholar
[13]
E. Mazancová, Z. Jonšta, K. Mazanec, Structural metallurgy properties of high manganese Fe-Mn-Al-C alloy, Hutnicke Listy 61 (2) (2008) 60-63.
Google Scholar
[14]
E. Mazancová, Z. Jonšta, K. Mazanec, Properties of high manganese Fe-Mn-Al-C alloys, Archives of Materials Science 28 (1-4) (2007) 90-94.
Google Scholar
[15]
S. Ganesh Sundara Raman, K.A. Padmanabhan, Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, Journal of Materials Science Letters 13 (1994) 389-392.
DOI: 10.1007/bf00420808
Google Scholar
[16]
A. Saeed-Akbari, W. Bleck, U. Prahl, The study of grain size effect on the microstructure development and mechanical properties of a high-Mn austenitic steel, Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec'2009, Berlin, 2009, 194.
Google Scholar
[17]
K. Renard, H. Idrissi, S. Ryelandt, F. Delannay, D. Schryvers, P.J. Jacques, Strain-hardening mechanisms in Fe-Mn-C austenitic TWIP steels: Mechanical and micromechanical characterisation, Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec'2009, Berlin, 2009, 72.
DOI: 10.1007/978-3-540-85226-1_325
Google Scholar
[18]
D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Materials Science and Engineering A 500 (2009) 196-206.
DOI: 10.1016/j.msea.2008.09.031
Google Scholar
[19]
L. Bracke, K. Verbeken, L. Kestens, J. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Materialia 57 (2009) 1512-1524.
DOI: 10.1016/j.actamat.2008.11.036
Google Scholar
[20]
A. Grajcar, R. Kuziak, Softening kinetics in Nb-microalloyed TRIP steels with increased Mn content, Advanced Materials Research 314-316 (2011) 119-122.
DOI: 10.4028/www.scientific.net/amr.314-316.119
Google Scholar
[21]
A. Grajcar, M. Opiela, G. Fojt-Dymara, G., The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9 (3) (2009) 49-58.
DOI: 10.1016/s1644-9665(12)60217-9
Google Scholar
[22]
A. Grajcar, Hot-working in the g+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28 (2007) 743-750.
Google Scholar