[1]
G.A. Fitzpatrick and T. Broughton, Diffusion bonding aeroengine components, Defence Science Journal. 38/4 (1988) 477‐485.
DOI: 10.14429/dsj.38.5877
Google Scholar
[2]
Method of thermomechanical treatment of two-phase titanium alloys, Patent RF No 2, 285, 740 RU C1, C22F 1/18, 20 Oct (2006).
Google Scholar
[3]
V.V. Stolyarov, L.O. Shestakova, A.I. Zharikov, V.V. Latysh, R.Z. Valiev, Y.T. Zhu, T.C. Lowe, Mechanical properties of nanostructured titanium alloys processed using severe plastic deformation, Proc. of 9th World Conference on Titanium-99. 1 (2000).
Google Scholar
[4]
Y. Kolobov, G. Grabovetskaya, K. Ivanov, R. Valiev, Y. Zhu, Grain boundary diffusion and creep of UFG Ti and Ti-6Al-4V alloy processed by severe plastic deformation, Proc. of Ultrafine Grained Materials III. (2004) 621-628.
DOI: 10.1007/978-94-011-4062-1_33
Google Scholar
[5]
I. Semenova, G. Raab, E. Golubovskiy, R. Valiev, Service properties of ultrafine-grained Ti–6Al–4V alloy at elevated temperature, J. Mater. Sci. 48, 13 (2013) 4806-4812.
DOI: 10.1007/s10853-013-7305-x
Google Scholar
[6]
M. Islam, J. Pilling and N. Ridley, Effect of surface finish and sheet thickness on isostatic diffusion bonding of superplastic Ti‐6AI‐4V, Mater. Sci. and Tec. 13 (1997) 1045‐1050.
DOI: 10.1179/mst.1997.13.12.1045
Google Scholar
[7]
J. Pilling, The kinetics of isostatic diffusion bonding in superplastic materials, Materials Science and Engineering 100 (1988) 137‐144.
DOI: 10.1016/0025-5416(88)90249-2
Google Scholar
[8]
H.S. Lee, J.H. Yoon, Y.M. Yi, Fabrication of titanium parts by massive diffusion bonding, Journal of Materials Processing Technology. 201 (2008) 280–284.
DOI: 10.1016/j.jmatprotec.2007.11.183
Google Scholar
[9]
X. Sauvage, G. Wilde, S. Divinski, Z. Horita, R. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Materials Science and Engineering A. 540 (2012) 1– 12.
DOI: 10.1016/j.msea.2012.01.080
Google Scholar
[10]
G.Q. Wu, Z.F. Li, G.X. Luo and Z. Huang, The effects of various finished surfaces on diffusion bonding, Modelling Simul. Mater. Sci. Eng. 16, 085006 (2008) 1-9.
DOI: 10.1088/0965-0393/16/8/085006
Google Scholar
[11]
J. Pilling, N. Ridley and M.F. Islam, On the modelling of diffusion bonding in materials: superplastic Super Alpha-2, Materials Science and Engineering A. 205 (1996) 72‐78.
DOI: 10.1016/0921-5093(95)09871-2
Google Scholar
[12]
T.G. Langdon, Сreep at low stresses: an evaluation of diffusion creep and harper-dorn creep as viable creep mechanisms, Metallurgical and Mat. Transactions A. 33a, (2002) 249-259.
DOI: 10.1007/s11661-002-0087-4
Google Scholar