Microstructure and Mechanical Property in Cast AZ91 Magnesium Alloy with Y Addition

Article Preview

Abstract:

Microstructures and Vickers microhardness in AZ91 magnesium alloys without and with 1mass%Y addition fabricated by casting were investigated. Vickers microhardness increases with adding 1%Y. Microstructure in AZ91 without Y addition was analyzed to contain mainly α-Mg and Mg17Al12 by X-ray diffraction. Microstructural observations with optical, scanning and transmission electron microscopes show that microstructure consists of α-Mg dendrite, non-equilibrium eutectic Mg17Al12 and lamellar Mg17Al12. The non-equilibrium eutectic Mg17Al12 exists between α-Mg dendrites. The lamellar Mg17Al12 forms near the edge of the α-Mg dendrite arm. The lamellar Mg17Al12 has Burgers orientation relationship for α-Mg matrix. It suggests that the lamellar Mg17Al12 precipitates from Al-supersaturated region within α-Mg dendrite. Addition of Y to AZ91 hardly changes dendrite arm spacing, but decreases a size of region, where longitudinal directions of primary dendrite arms are almost parallel or a single dendrite exists. Y-addition increases nucleation site for dendrite, namely makes the unidirectionally-solidified region fine, resulting in increase in hardness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

472-477

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.J. Bettles, M.A. Gibson, S.M. Zhu: Mater. Sci. Eng. A, 505 (2009) 6-12.

Google Scholar

[2] L. Commin, M. Dumont, R. Rotinat, F. Pierron, J. -E. Masse, L. Barrallier: Mater. Sci. Eng. A, 551 (2012) 288- 292.

DOI: 10.1016/j.msea.2012.05.021

Google Scholar

[3] Z. Li, J. Dong, X. Q. Zeng, C. Lu, W. J. Ding: Mater. Sci. Eng. A, 466 (2007) 134-139.

Google Scholar

[4] Y. Li, Y. Chen, H. Cui, B. Xiong, J. Zhang: Mater. Characterization, 60 (2009) 240- 245.

Google Scholar

[5] S. Candan, M. Unal, E. Koc, Y. Turen, E. Candan: J. Alloys and Compounds, 509 (2011) 1958-(1963).

DOI: 10.1016/j.jallcom.2010.10.100

Google Scholar

[6] C. Jihua, C. Zhenhua, Y. Hongge, Z. Fuquan, L. Kun: J. Alloys and Compounds, 461 (2008) 209-215.

Google Scholar

[7] Y. -X. Wang, J. -W. Fu, Y. -S. Yang: Trans. Nonferrous Met. Soc. China, 22 (2012) 1322-1328.

Google Scholar

[8] D. Qiu, M. -X. Zhang, J.A. Taylor, P.M. Kelly: Acta Mater., 57 (2009) 3052-3059.

Google Scholar

[9] S. -R. Wang, P. -Q. Guo, L. -Y. Yang, Y. Wang: J. Mater. Eng. Performance, 18 (2009) 137-144.

Google Scholar

[10] A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer, D. H. StJohn: J. Light Metals, 1 (2001) 61-72.

Google Scholar

[11] K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, S. Ikeno: Mater. Trans., 52 (2011) 340-344.

DOI: 10.2320/matertrans.mb201021

Google Scholar

[12] D. Qiu, M. –X. Zhang, P. M. Kelly: Scripta Mater., 61 (2009) 312-315.

Google Scholar