High Temperature Creep Behavior and Effects of Stacking Fault Energy in Mg-Y and Mg-Y-Zn Dilute Solid Solution Alloys

Article Preview

Abstract:

Compressive creep behavior of hot-rolled (40%) Mg-Y binary and Mg-Y-Zn ternary dilute solid solution alloys are investigated in this study. Creep strength is substantially improved by the addition of zinc. Activation Energy for creep in Mg-Y and Mg-Y-Zn alloys are around 200 kJ/mol at the temperature range from 480 to 570 K. These values are higher than the activation energy for self-diffusion coefficient in magnesium (135 kJ/mol). Many stacking faults, which are planar type defects are observed on the basal planes of the magnesium matrix in Mg-Y-Zn ternary alloys. TEM observation has been revealed that the non-basal a-dislocation slip is significantly activated by these alloys. The rate controlling mechanism of Mg-Y and Mg-Y-Zn dilute alloys are considered to the cross-slip or prismatic-slip controlled dislocation creep with high activation energy for creep, more than 1.5 times higher than the activation energy for creep controlled dislocation climb.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

491-496

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ahmed, G.W. Lorimer, P. Lyon, R. Pilkington: Magnesium Alloys and Their Applications (1992), p.301.

Google Scholar

[2] W. Henning and B.L. Mordike: Strength of Metals and Alloys, (1985), p.803.

Google Scholar

[3] B.L. Mordike and W. Henning: Magnesium Technology, (1986), p.54.

Google Scholar

[4] M. Ahmed, R. Pilkington, P. Lyon, G.W. Lorimer: Magnesium Alloys and Their Applications, (1992), p.251.

Google Scholar

[5] M. Suzuki, H. Sato, K. Maruyama, H. Oikawa: Mater. Sci. Eng., Vol. A252 (1998), p.248.

Google Scholar

[6] Y. Kawamura, K. Hayashi and A. Inoue: Mater. Trans., Vol. 42 (2001), p.1172.

Google Scholar

[7] E. Abe, Y. Kawamura, K. Hayashi, A. Inoue: Acta Mater., Vol. 50(2002), P. 3845.

Google Scholar

[8] D. Egusa and E. Abe: Acta Mater., Vol. 60(2012), P. 166.

Google Scholar

[9] Z. P. Luo, S. Q. Zhang: J. Mater. Sci. Lett., Vol. 19 (2000), P. 813.

Google Scholar

[10] K. Maruyama, M. Suzuki and H. Sato: Metall. Mater. Trans., Vol. 33A (2002), P. 875.

Google Scholar

[11] M. Suzuki, T. Kimura, J. Koike, K. Maruyama: Scripta Mater., Vol. 48 (2003) P. 997.

Google Scholar

[12] M. Suzuki, T. Kimura, J. Koike, K. Mauryama: Mater. Sci. Forum, Vols. 426-432(2003), P. 593.

Google Scholar

[13] H. W. King: J. Mater. Sci. Vol. 1(1966), p.79.

Google Scholar

[14] S. S. Vagarali and T. G. Langdon: Acta Met., Vol. 30(1982), p.1157.

Google Scholar

[15] M. Suzuki, H. Sato, and H. Oikawa: Strength of Materials (ICSMA 10), (1994), p.555.

Google Scholar

[16] P. G. Shewmon: Trans. Metall Soc. AIME, Vol. 206(1956), p.918.

Google Scholar

[17] B. L. Mordike: Mater. Sci. Eng., Vol. A324(2002), p.103.

Google Scholar

[18] S. S. Vagarali and T. G. Langdon: Acta Met., Vol. 29(1981), p. (1969).

Google Scholar

[19] B. Y. Chirouze, D. M. Schwartz, and J. E. Dorn: Trans. ASM, Vol. 60(1967), p.51.

Google Scholar

[20] H. Sieghoff and K. Ahkborn: Z. Metallkde., Vol. 76(1985), p.627.

Google Scholar

[21] J. J. Gilman: Trans. AIME, Vol. 206(1961), p.614.

Google Scholar

[22] E. R. Gilbert, S. A. Duran and A. L . Bement: ASTM STP, Vol. 458(1969), p.210.

Google Scholar

[23] M. Suzuki and K. Maruyama: to be published.

Google Scholar

[24] T. Uesugi and K. Higashi: J. Japan Inst. Light Metals, Vol. 54(2004), P. 82.

Google Scholar

[25] M. Suzuki and K. Maruyama: Mater. Sci. Forum, Vols. 638-642(2010), P. 1602.

Google Scholar