[1]
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro, Design and mechanical properties of new β-type titanium alloys for implant materials, Mater. Sci. Eng., A243 (1998) 244-249.
DOI: 10.1016/s0921-5093(97)00808-3
Google Scholar
[2]
T. Ahmed, M. Long, J. Silvestri, C. Ruiz, H. J. Rack, A new low modulus, biocompatible titanium alloy, eds. P. A. Blenkinsop,W. J. Evans, H. M. Flower, Titanium '95, Science and Technology, Institute of Metals, London, UK, Vol. II, 1996, 1760-1767.
Google Scholar
[3]
M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa, Development of low rigidity β-type titanium alloy for biomedical applications, Mater. Trans., 43(2002) 2970-2977.
DOI: 10.2320/matertrans.43.2970
Google Scholar
[4]
N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato and M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy - plate fixation of tibia fracture model in rabbit -, J. Mater. Sci.: Mater. in Medicine, 19(2008).
DOI: 10.1007/s10856-008-3372-y
Google Scholar
[5]
M. Sato, R. Tu and T. Goto: Mater. Trans. 84 (2007) 1505-1510.
Google Scholar
[6]
H. Sakamoto, H. Doi, E. Kobayashi, T. Yoneyama, Y. Suzuki and T. Hanawa, Structure and strength at the bonding interface of a titanium - segmented polyurethane composite through 3-(trimethoxy-silyl) propyl methacrylate for artificial organs, J. Biomed. Mater. Research Part A, 82 (2007).
DOI: 10.1002/jbm.a.30957
Google Scholar
[7]
D. M. Liu, T. Troczynski and W. J. Tseng, Water-based sol–gel synthesis of hydroxyapatite: process development, Biomaterials. 22 (2001) 1721-1730.
DOI: 10.1016/s0142-9612(00)00332-x
Google Scholar
[8]
W. Wheng and J. L. Baptista, Preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method J. Am. Ceram. Soc., 82 (1999) 27-32.
DOI: 10.1111/j.1151-2916.1999.tb01719.x
Google Scholar
[9]
H. Ji, C.B. Ponton and P. M. Marquis, Microstructural characterization of hydroxyapatite coating on titanium, J. Mater. Sci. Mater. Med., 3 (1992) 283-287.
DOI: 10.1007/bf00705294
Google Scholar
[10]
I. Baltag, K. Watanabe, H. Kusakari, N. Taguchi, O. Miyakawa, M. Kobayashi and N. Ito, Long-term changes of hydroxyapatite-coated dental implants, J. Biomed. Mater. Res. B, 53 (2000) 76-85.
DOI: 10.1002/(sici)1097-4636(2000)53:1<76::aid-jbm11>3.0.co;2-4
Google Scholar
[11]
T. Narushima, K. Ueda, T. Goto, H. Masumoto, T. Katsube, H. Kawamura, C. Ouchi and Y. Iguchi, Preparation of calcium phosphate films by radiofrequency magnetron sputtering, Mater. Trans., 46 (2005) 2246-2252.
DOI: 10.2320/matertrans.46.2246
Google Scholar
[12]
K. Yamashita, T. Arashi, K. Kitagaki, S. Yamada, T. Umegaki and K. Ogawa, Preparation of apatite thin films through rf‐sputtering from calcium phosphate glasses, J. Am. Ceram. Soc., 77 (1994) 2401-2407.
DOI: 10.1111/j.1151-2916.1994.tb04611.x
Google Scholar
[13]
M. Sato, R. Tu, T. Goto, Hydroxyapatite Formation on CaTiO3 Film Prepared by Metal-Organic Chemical Vapor Deposition, Mater. Trans., 48 (2007) 1505-1510.
DOI: 10.2320/matertrans.mra2007016
Google Scholar
[14]
H. Tsutsumi, M. Niinomi, M. Nakai, T. Gozawa, T. Akahori, K. Saito, R. Tu and T. Goto, Fabrication of hydroxyapatite film on Ti-29Nb-13Ta-4. 6Zr using a MOCVD technique, Mater. Trans., 51(2010) 2277-2283.
DOI: 10.2320/matertrans.l-m2010821
Google Scholar
[15]
M. Yoshinari, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono, Bio-functionalization of titanium surfaces for dental implants, Mater. Trans., 43( 2002) 2494–2501.
DOI: 10.2320/matertrans.43.2494
Google Scholar
[16]
H. Ikeda, T. Yamaza, M. Yoshinari, Y. Ohsaki, Y. Ayukawa, M. Kido, T. Inoue, M. Shimono, K. Koyano, T. Tanaka, Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla, J. Periodontology. 71 (2000).
DOI: 10.1902/jop.2000.71.6.961
Google Scholar
[17]
K. Ekstrand, I.E. Ruyter, H. Øysæd, Adhesion to titanium of methacrylate-based polymer materials, Dent. Mater., 4(988) 111–115.
Google Scholar
[18]
J.P. Matinlinna, M. Özcan, L.V.J. Lassila, The effect of a 3-methacryloxypropyl trimeth- oxysilane blend and tris(3-trimethoxysilylpropyl) isocyanurate on the shear bond strength of composite resin to titanium metal, Dent. Mater., 20(2003).
DOI: 10.1016/j.dental.2003.10.009
Google Scholar
[19]
J.P. Matinlinna, L.V.J. Lassila, P.K. Vallittu, The effect of five silane coupling agents on the bond strength of a luting cement to a silica-coated titanium, Dent. Mater., 23(2007) 1173–1180.
DOI: 10.1016/j.dental.2006.06.052
Google Scholar
[20]
J. Hieda, M. Niinomi, M. Nakai, H. Kamura, H. Tsutsumi, and T. Hanawa,. Effect of terminal functional groups of silane layers on adhesion strength of Ti-29Nb-13Ta-4. 6Zr alloy/biocompatible segment polyurethane interface, Surface and Coating Tech., 206(2012).
DOI: 10.1016/j.surfcoat.2011.12.044
Google Scholar