Biofunctional Surface Layer and its Bonding Strength in Low Modulus β-Type Titanium Alloy for Biomedical Applications

Article Preview

Abstract:

Recently, low-modulus β-type titanium alloys have been the focus of considerable attention because of their high biocompatibility and their low moduli that make them effective for inhibiting bone atrophy and for enhancing bone remodeling. However, the biofunctinalities of titanium alloys, such as bone conductivity, blood compatibility, and soft tissue compatibility, are poor. Therefore, surface modification techniques such as bioactive ceramic surface modification and blood-and soft-tissue-compatible polymer surface modification are applied to titanium alloys. Hydroxyapatite (HAp) surface modification via metal organic chemical vapor deposition (MOCVD) and segmented polyurethane (SPU) surface modification via silane coupling treatment are effective techniques to add biofunctionalites to titanium alloys. HAp surface modification via MOCVD and SPU surface modification using three kinds of silane coupling agents on a low modulus beta-type titanium alloy, namely, TNTZ, are discussed. Moreover, the bonding strengths of HAp and SPU on the surface of TNTZ, which are important parameters, are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

78-84

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro, Design and mechanical properties of new β-type titanium alloys for implant materials, Mater. Sci. Eng., A243 (1998) 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[2] T. Ahmed, M. Long, J. Silvestri, C. Ruiz, H. J. Rack, A new low modulus, biocompatible titanium alloy, eds. P. A. Blenkinsop,W. J. Evans, H. M. Flower, Titanium '95, Science and Technology, Institute of Metals, London, UK, Vol. II, 1996, 1760-1767.

Google Scholar

[3] M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa, Development of low rigidity β-type titanium alloy for biomedical applications, Mater. Trans., 43(2002) 2970-2977.

DOI: 10.2320/matertrans.43.2970

Google Scholar

[4] N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato and M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy - plate fixation of tibia fracture model in rabbit -, J. Mater. Sci.: Mater. in Medicine, 19(2008).

DOI: 10.1007/s10856-008-3372-y

Google Scholar

[5] M. Sato, R. Tu and T. Goto: Mater. Trans. 84 (2007) 1505-1510.

Google Scholar

[6] H. Sakamoto, H. Doi, E. Kobayashi, T. Yoneyama, Y. Suzuki and T. Hanawa, Structure and strength at the bonding interface of a titanium - segmented polyurethane composite through 3-(trimethoxy-silyl) propyl methacrylate for artificial organs, J. Biomed. Mater. Research Part A, 82 (2007).

DOI: 10.1002/jbm.a.30957

Google Scholar

[7] D. M. Liu, T. Troczynski and W. J. Tseng, Water-based sol–gel synthesis of hydroxyapatite: process development, Biomaterials. 22 (2001) 1721-1730.

DOI: 10.1016/s0142-9612(00)00332-x

Google Scholar

[8] W. Wheng and J. L. Baptista, Preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method J. Am. Ceram. Soc., 82 (1999) 27-32.

DOI: 10.1111/j.1151-2916.1999.tb01719.x

Google Scholar

[9] H. Ji, C.B. Ponton and P. M. Marquis, Microstructural characterization of hydroxyapatite coating on titanium, J. Mater. Sci. Mater. Med., 3 (1992) 283-287.

DOI: 10.1007/bf00705294

Google Scholar

[10] I. Baltag, K. Watanabe, H. Kusakari, N. Taguchi, O. Miyakawa, M. Kobayashi and N. Ito, Long-term changes of hydroxyapatite-coated dental implants, J. Biomed. Mater. Res. B, 53 (2000) 76-85.

DOI: 10.1002/(sici)1097-4636(2000)53:1<76::aid-jbm11>3.0.co;2-4

Google Scholar

[11] T. Narushima, K. Ueda, T. Goto, H. Masumoto, T. Katsube, H. Kawamura, C. Ouchi and Y. Iguchi, Preparation of calcium phosphate films by radiofrequency magnetron sputtering, Mater. Trans., 46 (2005) 2246-2252.

DOI: 10.2320/matertrans.46.2246

Google Scholar

[12] K. Yamashita, T. Arashi, K. Kitagaki, S. Yamada, T. Umegaki and K. Ogawa, Preparation of apatite thin films through rf‐sputtering from calcium phosphate glasses, J. Am. Ceram. Soc., 77 (1994) 2401-2407.

DOI: 10.1111/j.1151-2916.1994.tb04611.x

Google Scholar

[13] M. Sato, R. Tu, T. Goto, Hydroxyapatite Formation on CaTiO3 Film Prepared by Metal-Organic Chemical Vapor Deposition, Mater. Trans., 48 (2007) 1505-1510.

DOI: 10.2320/matertrans.mra2007016

Google Scholar

[14] H. Tsutsumi, M. Niinomi, M. Nakai, T. Gozawa, T. Akahori, K. Saito, R. Tu and T. Goto, Fabrication of hydroxyapatite film on Ti-29Nb-13Ta-4. 6Zr using a MOCVD technique, Mater. Trans., 51(2010) 2277-2283.

DOI: 10.2320/matertrans.l-m2010821

Google Scholar

[15] M. Yoshinari, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono, Bio-functionalization of titanium surfaces for dental implants, Mater. Trans., 43( 2002) 2494–2501.

DOI: 10.2320/matertrans.43.2494

Google Scholar

[16] H. Ikeda, T. Yamaza, M. Yoshinari, Y. Ohsaki, Y. Ayukawa, M. Kido, T. Inoue, M. Shimono, K. Koyano, T. Tanaka, Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla, J. Periodontology. 71 (2000).

DOI: 10.1902/jop.2000.71.6.961

Google Scholar

[17] K. Ekstrand, I.E. Ruyter, H. Øysæd, Adhesion to titanium of methacrylate-based polymer materials, Dent. Mater., 4(988) 111–115.

Google Scholar

[18] J.P. Matinlinna, M. Özcan, L.V.J. Lassila, The effect of a 3-methacryloxypropyl trimeth- oxysilane blend and tris(3-trimethoxysilylpropyl) isocyanurate on the shear bond strength of composite resin to titanium metal, Dent. Mater., 20(2003).

DOI: 10.1016/j.dental.2003.10.009

Google Scholar

[19] J.P. Matinlinna, L.V.J. Lassila, P.K. Vallittu, The effect of five silane coupling agents on the bond strength of a luting cement to a silica-coated titanium, Dent. Mater., 23(2007) 1173–1180.

DOI: 10.1016/j.dental.2006.06.052

Google Scholar

[20] J. Hieda, M. Niinomi, M. Nakai, H. Kamura, H. Tsutsumi, and T. Hanawa,. Effect of terminal functional groups of silane layers on adhesion strength of Ti-29Nb-13Ta-4. 6Zr alloy/biocompatible segment polyurethane interface, Surface and Coating Tech., 206(2012).

DOI: 10.1016/j.surfcoat.2011.12.044

Google Scholar