Microstructure, Fracture and Mechanical Properties of ECAPed Aluminum P/M Alloy with Respect to the Porosity

Article Preview

Abstract:

The main aim of this paper is to investigate the effects of different processing conditions on the behavior of a P/M (Powder Metallurgy) aluminum alloy with respect to the microstructure, fracture and mechanical properties. Moreover, the evolution of porosity as a consequence of pressing, sintering and ECAPing processes was investigated. A commercial Al-Mg-Si-Cu-Fe powder was used as material to be investigated. Different compacting pressures (400, 500, 600, 700 MPa) were applied. Specimens were dewaxed in a ventilated furnace at 400 °C for 60 min before sintering. Sintering was carried out in a vacuum furnace at 610 °C for 30 min. The specimens were ECAPed for 1 pass. The 2-dimensional quantitative image analysis was carried out by means of SEM and OM for the evaluation of the dimensional and morphological porosity characteristics. The detailed microstructure revealed the main features of sintering processes as well as secondary pores at the prior alloying particle sites. The tensile fracture surfaces in both studied processing condition (as-sintered and ECAP) show limited ductility, with fracture occurring on a plane normal to the tensile stress axis. Examination at higher magnifications revealed predominantly transparticle ductile features. In terms of mechanical properties, ECAP is almost doubling the tensile strength of the as-sintered materials

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

108-113

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ziani and S. Pelletier, Int. J. Powder Metall. 35 (1999) 49-58.

Google Scholar

[2] J.M. Martín, T. Gómez-Acebo and F. Castro, Powder Metall. 45 (2002) 173-180.

Google Scholar

[3] J.M. Martín and F. Castro, Mater. Sci. Forum 426-432 (2003) 107-114.

Google Scholar

[4] G.B. Schaffer and B.J. Hall, Metall. Mater. Trans. A 33 (2002) 3279-3284.

Google Scholar

[5] T.B. Sercombe and G.B. Schaffer, Acta Mater. 47 (1999) 689-697.

Google Scholar

[6] S.K. Rout, G. Veltl and F. Petzoldt, Effect of Sn additions on Microstructure Evolution in Sintered Aluminium Alloys, in: H. Danninger, R. Ratzi (Eds. ), Proceedings of Euro Powder Metallurgy Congress, Vol. 4, EPMA, Shrewsbury, 2004, pp.9-14.

Google Scholar

[7] J.R. Groza, J. Mat. Eng. Perform. 2 (1993) 283-290.

Google Scholar

[8] R.Y. Lapovok, J. Mater. Sci. 40 (2005) 341-346.

Google Scholar

[9] X. Wu, W. Xu and K. Xia, Mater. Sci. Eng. A 493 (2008) 241-245.

Google Scholar

[10] R. Bidulský, J. Bidulská, M. Actis Grande, High Temp. Mater. Process. 28 (2009) 337-342.

Google Scholar

[11] N. Izairi, F. Ajredini, M. Ristova and A. Vevecka-Priftaj, Acta Metall. Slovaca 19 (2013) 302-309.

DOI: 10.12776/ams.v19i4.170

Google Scholar

[12] L. Pantelejev, O. Man and L. Kunz, Acta Metall. Slovaca 17 (2011) 158-162.

Google Scholar

[13] R.Z. Valiev and T.G. Langdon, Prog. Mat. Sci. 51 (2006) 881-981.

Google Scholar

[14] R.N. Lumley and G.B. Schaffer, Scripta Mater. 39 (1998) 1089-1094.

Google Scholar

[15] J.M. Martín, B. Navarcorena, I. Arribas, T. Gómez-Acebo and F. Castro, Dimensional Changes and Secondary Porosity in Liquid Phase Sintered Al Alloys, in: H. Danninger, R. Ratzi (Eds. ), Proceedings of Euro Powder Metallurgy Congress, Vol. 4, EPMA, Shrewsbury, 2004, pp.46-53.

Google Scholar

[16] G.B. Schaffer, T.B. Sercombe and R.N. Lumley, Mater. Chem. Phys. 67 (2001) 85-91.

Google Scholar

[17] H. Danninger, Powder Metall. 30 (1987) 103-109.

Google Scholar

[18] D.R. Fang et al., Mater. Sci. Eng. A 426 (2006) 305-313.

Google Scholar

[19] M. Vedani, P. Bassani, M. Cabibbo and E. Evangelista, Metall. Sci. Techn. 21 (2003) 3-9.

Google Scholar

[20] T. Kvačkaj, J. Bidulská, M. Fujda, R. Kočiško, I. Pokorný and O. Milkovic, Mater. Sci. Forum 633-634 (2010) 273-302.

DOI: 10.4028/www.scientific.net/msf.633-634.273

Google Scholar

[21] M. Matvija, M. Fujda, O. Milkovic, T. Kvačkaj, M. Vojtko, P. Zubko and R. Kočiško, Acta Metall. Slovaca 18 (2012) 4-12.

DOI: 10.12776/amsc.v3i0.109

Google Scholar

[22] K. Xia, Adv. Eng. Mater. 12 (2010) 724-729.

Google Scholar

[23] X.S. Wei, Mater. Sci. Eng. A 528 (2011) 5784-5789.

Google Scholar

[24] R. Lapovok, Int. J. Fract. 115 (2002) 159-172.

Google Scholar

[25] W.Z. Han, Z.F. Zhang, S.D. Wu and S.X. Li, Acta Mater. 55 (2007) 5889-5900.

Google Scholar