[1]
J.P. Hirth, Theories of hydrogen induced cracking of steels, in: R. Gibala, R.F. Hehemann (Eds. ), Hydrogen Embrittlement and Stress Corrosion Cracking, ASM International, Materials Park, OH, 1984, p.30–41.
Google Scholar
[2]
M.T. Shehata, M. Elboujdaini, W. Revie, Initiation of stress corrosion cracking and hydrogen-induced cracking in oil and gas line-pipe steels, in: G. Pluvinage, M.H. Elwanty (Eds. ), Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines, Springer, The Netherlands, 2008, p.115.
DOI: 10.1007/978-1-4020-6526-2_7
Google Scholar
[3]
S.K. Yen, I.B. Huang, Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel, Mater. Chem. Physics 80 (2003) 662–666.
DOI: 10.1016/s0254-0584(03)00084-1
Google Scholar
[4]
X.C. Ren, Q.I. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metall. Mater. Trans. A, 39A (2008) 88-97.
DOI: 10.1007/s11661-007-9391-3
Google Scholar
[5]
D. Pérez Escobar, C. Miñambres, L. Duprez, K. Verbeken, M. Verhaege, Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging, Corros. Sci., 53 (2011) 3166-3176.
DOI: 10.1016/j.corsci.2011.05.060
Google Scholar
[6]
H-L. Lee, S. L-I. Chan, Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure, Mater. Sci. Eng, A 142 (1991) 193-201.
DOI: 10.1016/0921-5093(91)90658-a
Google Scholar
[7]
G.T. Park, S. U. Koh, H.G. Jung, K. Y. Kim, Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel, Corros. Sci. 50 (2008) 1865–1871.
DOI: 10.1016/j.corsci.2008.03.007
Google Scholar
[8]
W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corros. Sci. 50 (2008) 3336–3342.
DOI: 10.1016/j.corsci.2008.09.030
Google Scholar
[9]
H.B. Xue, Y.F. Cheng, Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking, Corros. Sci. 53 (2011) 1201–1208.
DOI: 10.1016/j.corsci.2010.12.011
Google Scholar
[10]
V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, J.M. Hallen, On the role of crystallographic texture in mitigating hydrogen-induced cracking in pipeline steels, Corros. Sci. 53 (2011) 4204–4212.
DOI: 10.1016/j.corsci.2011.08.031
Google Scholar
[11]
D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, E.V. Pereloma, Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking, Mater. Sci. Eng. A, 551 (2012) 40-49.
DOI: 10.1016/j.msea.2012.04.076
Google Scholar
[12]
AS/NZS 3752-2006 Welding and allied processes - determination of hydrogen content in ferritic steel arc weld metal, Australia Standards, 2006, 29 p.
DOI: 10.3403/02234157
Google Scholar
[13]
S. Kim, T.J. Marrow, Application of electron backscattered diffraction to cleavage fracture in duplex stainless steel, Scr. Mater. 40 (1999) 1395–1400.
DOI: 10.1016/s1359-6462(99)00095-0
Google Scholar