Effect of Aging on Super-Elastic Response of a Polycrystalline FeNiCoAlNbB Shape Memory Alloy

Article Preview

Abstract:

This study reports the effect of aging duration on the super-elastic response of Fe-30%Ni-18%Co-10.5%Al-2%Nb-0.15%B (at.%) poly-crystals in compression. The aging temperature was 600°C and the aging durations were 20h, 45h, 60h and 72h, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used in the work. The results show that with prolonging the aging duration, the super-elastic strain rises firstly and then descends. The super-elastic strain reaches the maximum 10.5% when the aging duration is 60h. The crisis stress for stress-induced martensite (σM) has no obvious changes, being about 250MPa when the aging duration is between 20h and 60h. But σM increases markedly when the aging duration prolongs to 72h. The hardness of the specimens changes in the same way as the superelastic strain, and reaches the maximum of 497HV10 when the aging duration is 60h. During the aging process, two factors react. One is the decomposing and reducing in size of the undissolved phase (σ). The other is the formation of the precipitation phase (γ'). Nb can dissolve into the matrix phase (γ) adequately and promote the formation of γ'. The combination of the two factors improves the strength and superelasticity of the specimens till the over-aging arises corresponding to the 72h aging duration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-287

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Ma, I. Karaman, Expanding the Repertoire of Shape Memory Alloys, Science 327 (2010) 1468-1469.

DOI: 10.1126/science.1186766

Google Scholar

[2] H. Funakubo, Shape Memory Alloys, Gordon and Breach Science Publishers, New York, 1989.

Google Scholar

[3] T. Maki, Shape Memory Material, Cambridge University Press, Cambridge, 1998.

Google Scholar

[4] K. Tanaka, T. Hayashi, Y. Itoh, H. Tobushi, Analysis of thermomechanical behavior of shape memory alloys, Mechanics of Materials 13 (1992) 207-215.

DOI: 10.1016/0167-6636(92)90003-v

Google Scholar

[5] W.J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Phase transformation behavior under uniaxial deformation of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy, Materials Science and Engineering: A 581 (2013) 1-7.

DOI: 10.1016/j.msea.2013.06.002

Google Scholar

[6] Takeshi Saito, Cz. Kapusta, Akito Takasaki, Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering, Materials Science and Engineering: A 592 (2014) 88-94.

DOI: 10.1016/j.msea.2013.10.097

Google Scholar

[7] X. H. Min, T. Sawaguchi, K. Ogawa, Maruyama, Shape memory effect in Fe–Mn–Ni–Si–C alloys with low Mn contents, Materials Science and Engineering: A 528 (2011) 5251-5258.

DOI: 10.1016/j.msea.2011.03.059

Google Scholar

[8] C. P. Wang, Y. H. Wen, H. B. Peng, D. Q. Xu, Factors affecting recovery stress in Fe–Mn–Si–Cr–Ni–C shape memory alloys, Materials Science and Engineering: A 528 (2011) 1125-1130.

DOI: 10.1016/j.msea.2010.10.068

Google Scholar

[9] B. Pricop, U. Söyler, N. M. Lohan, B. Özkal, L. G. Bujoreanu, D. Chicet, C. Munteanu, Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy, Journal of Materials Engineering and Performance 21 (2012) 2407-2416.

DOI: 10.1007/s11665-012-0168-5

Google Scholar

[10] Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Ferrous Polycrystalline Shape-Memory Alloy Showing Huge, Science 327 (2010) 1488-1490.

DOI: 10.1126/science.1183169

Google Scholar

[11] Ji Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo and Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals, Acta Materialia 61 (2013) 3445-3455.

DOI: 10.1016/j.actamat.2013.02.036

Google Scholar

[12] J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy, Acta Materialia 60 (2012) 2186-2195.

DOI: 10.1016/j.actamat.2011.12.047

Google Scholar

[13] H. OHTSUKA, S. KAJIWARA, Effects of Carbon Content and Ausaging on y <, Transformation Behavior and Reverse-Transformed Structure in Fe-Ni-Co-AI-C Alloys, METALLURGICAL AND MATERIALS TRANSACTIONS A 25 (1994) 63-71.

DOI: 10.1007/bf02646675

Google Scholar

[14] A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy, Scripta Materialia 67 (2012) 475-478.

DOI: 10.1016/j.scriptamat.2012.06.006

Google Scholar

[15] Huseyin Sehitoglu, X. Y. Zhang, T. Kotil, D. Canadinc, Y. Chumlyakov, H. J. Maier, Shape memory behavior of FeNiCoTi single and polycrystals, Metallurgical and Materials Transactions A 33(2002) 3661-3672.

DOI: 10.1007/s11661-002-0240-0

Google Scholar

[16] Hiroyuki Y. Yasuda, Progress in Advanced Structural and Functional Materials Design, Springer Japan Science Publisher, Tokyo, 2013.

Google Scholar

[17] Kazuhiro Otsuka, Avadh Saxena, Junkai Deng, Xiaobing Ren, Mechanism of the shape memory effect in martensitic alloys: an assessment, Philosophical Magazine, 91 (2011) 4514-4535.

DOI: 10.1080/14786435.2011.608735

Google Scholar

[18] C. Bubulinca, X. Balandraud, M. Grédiac, S. Stanciu, M. Abrudeanu, Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science 3 (2013) 1-5.

DOI: 10.1007/s10853-013-7751-5

Google Scholar

[19] S. Kajiwara, Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys, Materials Science and Engineering: A 67 (1999) 67-88.

DOI: 10.1016/s0921-5093(99)00290-7

Google Scholar

[20] C. H. Lei, L. J. Li, Y. C. Shu, J. Y. Li, Austenite–martensite interface in shape memory alloys, Appl. Phys. Lett. 96 (2010) 141910.

DOI: 10.1063/1.3385278

Google Scholar

[21] Wangyang Ni, Yang-Tse Cheng, David S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82 (2003) 2811.

DOI: 10.1063/1.1569984

Google Scholar

[22] Guozheng Kang, Wenyi Yan, Effects of phase transition on the hardness of shape memory alloys, Appl. Phys. Lett. 94 (2009) 261906

Google Scholar