[1]
J. Ma, I. Karaman, Expanding the Repertoire of Shape Memory Alloys, Science 327 (2010) 1468-1469.
DOI: 10.1126/science.1186766
Google Scholar
[2]
H. Funakubo, Shape Memory Alloys, Gordon and Breach Science Publishers, New York, 1989.
Google Scholar
[3]
T. Maki, Shape Memory Material, Cambridge University Press, Cambridge, 1998.
Google Scholar
[4]
K. Tanaka, T. Hayashi, Y. Itoh, H. Tobushi, Analysis of thermomechanical behavior of shape memory alloys, Mechanics of Materials 13 (1992) 207-215.
DOI: 10.1016/0167-6636(92)90003-v
Google Scholar
[5]
W.J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Phase transformation behavior under uniaxial deformation of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy, Materials Science and Engineering: A 581 (2013) 1-7.
DOI: 10.1016/j.msea.2013.06.002
Google Scholar
[6]
Takeshi Saito, Cz. Kapusta, Akito Takasaki, Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering, Materials Science and Engineering: A 592 (2014) 88-94.
DOI: 10.1016/j.msea.2013.10.097
Google Scholar
[7]
X. H. Min, T. Sawaguchi, K. Ogawa, Maruyama, Shape memory effect in Fe–Mn–Ni–Si–C alloys with low Mn contents, Materials Science and Engineering: A 528 (2011) 5251-5258.
DOI: 10.1016/j.msea.2011.03.059
Google Scholar
[8]
C. P. Wang, Y. H. Wen, H. B. Peng, D. Q. Xu, Factors affecting recovery stress in Fe–Mn–Si–Cr–Ni–C shape memory alloys, Materials Science and Engineering: A 528 (2011) 1125-1130.
DOI: 10.1016/j.msea.2010.10.068
Google Scholar
[9]
B. Pricop, U. Söyler, N. M. Lohan, B. Özkal, L. G. Bujoreanu, D. Chicet, C. Munteanu, Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy, Journal of Materials Engineering and Performance 21 (2012) 2407-2416.
DOI: 10.1007/s11665-012-0168-5
Google Scholar
[10]
Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Ferrous Polycrystalline Shape-Memory Alloy Showing Huge, Science 327 (2010) 1488-1490.
DOI: 10.1126/science.1183169
Google Scholar
[11]
Ji Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo and Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals, Acta Materialia 61 (2013) 3445-3455.
DOI: 10.1016/j.actamat.2013.02.036
Google Scholar
[12]
J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy, Acta Materialia 60 (2012) 2186-2195.
DOI: 10.1016/j.actamat.2011.12.047
Google Scholar
[13]
H. OHTSUKA, S. KAJIWARA, Effects of Carbon Content and Ausaging on y <, Transformation Behavior and Reverse-Transformed Structure in Fe-Ni-Co-AI-C Alloys, METALLURGICAL AND MATERIALS TRANSACTIONS A 25 (1994) 63-71.
DOI: 10.1007/bf02646675
Google Scholar
[14]
A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy, Scripta Materialia 67 (2012) 475-478.
DOI: 10.1016/j.scriptamat.2012.06.006
Google Scholar
[15]
Huseyin Sehitoglu, X. Y. Zhang, T. Kotil, D. Canadinc, Y. Chumlyakov, H. J. Maier, Shape memory behavior of FeNiCoTi single and polycrystals, Metallurgical and Materials Transactions A 33(2002) 3661-3672.
DOI: 10.1007/s11661-002-0240-0
Google Scholar
[16]
Hiroyuki Y. Yasuda, Progress in Advanced Structural and Functional Materials Design, Springer Japan Science Publisher, Tokyo, 2013.
Google Scholar
[17]
Kazuhiro Otsuka, Avadh Saxena, Junkai Deng, Xiaobing Ren, Mechanism of the shape memory effect in martensitic alloys: an assessment, Philosophical Magazine, 91 (2011) 4514-4535.
DOI: 10.1080/14786435.2011.608735
Google Scholar
[18]
C. Bubulinca, X. Balandraud, M. Grédiac, S. Stanciu, M. Abrudeanu, Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science 3 (2013) 1-5.
DOI: 10.1007/s10853-013-7751-5
Google Scholar
[19]
S. Kajiwara, Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys, Materials Science and Engineering: A 67 (1999) 67-88.
DOI: 10.1016/s0921-5093(99)00290-7
Google Scholar
[20]
C. H. Lei, L. J. Li, Y. C. Shu, J. Y. Li, Austenite–martensite interface in shape memory alloys, Appl. Phys. Lett. 96 (2010) 141910.
DOI: 10.1063/1.3385278
Google Scholar
[21]
Wangyang Ni, Yang-Tse Cheng, David S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82 (2003) 2811.
DOI: 10.1063/1.1569984
Google Scholar
[22]
Guozheng Kang, Wenyi Yan, Effects of phase transition on the hardness of shape memory alloys, Appl. Phys. Lett. 94 (2009) 261906
Google Scholar