[1]
G.J. Chen, W. Lv, G.C. Tu and Y. Chen, Advance and basic physical metallurgical conditions of high-Bs nanocrystalline soft magnetic alloys, J Magn Mater Device. 44(2013) 69-77.
Google Scholar
[2]
G.J. Chen, G.C. Tu and W. Lv, Application of amorphous-nanocrystalline soft magnetic materials in high efficient motor, J Magn Mater Device. 43(2012) 1-5.
Google Scholar
[3]
S. Liu, Q.M. Xu and D. Jin, Study on Fe-based nanocrystalline bonded soft magnetic materials, Hot Working Technol. 35(2006) 15-16.
Google Scholar
[4]
L.F. Cao, M.B. Wang, Z. Li and X.M. Guo, Study on thermal stability of Fe-based nanocrystalline soft magnetic materials, Metall Funct Mater. 12(2005) 26-29.
Google Scholar
[5]
D.F. Liang, Z.H. Yu , X. Wang, M.G. Han and P.H. Zhou, Effect of annealing temperature on soft magnetic characteristic and microwave magnetism of nanocrystalline Fe52Co26Nb6B15Cu1 alloy, Heat Treat Met. 35(2010) 16-18.
Google Scholar
[6]
M. Li, Y.L. Zhao and Q. Zhu, Nano-crystal alloy Fe36Co36B20Si4Nb4 prepared by method of devitrification, Mat Heat Treat. 37(2008) 47-49.
Google Scholar
[7]
G.C. Tu, G.S. Ji, W. Lv and G.J. Chen, Low cost nanocrystalline soft magnetic alloys with high Bs and ultra-low core loss, Metall Funct Mater. 18(2011) 63-71.
Google Scholar
[8]
G.J. Chen, W. Lv, G.C. Tu, and Y. Chen, Advance and basic physical metallurgical conditions of high-Bs nanocrystalline soft magnetic alloys, J Magn Mater Device. 44(2013) 69-77.
Google Scholar
[9]
O. Nielsen, Effect of longitudinal and torsional stress annealing on the magnetic anisotropy in amorphous ribbon materials, IEEE Trans Magn. 21(1985) 2008-2012.
DOI: 10.1109/tmag.1985.1064072
Google Scholar
[10]
L. Kraus, K. Závěta, O. Heczko, P. Duhaj, G. Vlasák and J. Schneider, Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy, J Magn Magn Mat. 112(1992) 275-277.
DOI: 10.1016/0304-8853(92)91172-p
Google Scholar
[11]
Q.Z. Zhi, W.Z. Chen, J.Y. Liu and K.Y. He, Effect of stress annealing on magnetic properties for nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys, Chin J Mater Res. 20(2006) 221-223.
Google Scholar
[12]
F.Y. Shi, Y.Z. Fang, H.J. Sun, J.J. Zheng, G.J. Lin and F.M. Wu, The mesoscopic structure research for transverse magnetic anisotropy of stress annealed Fe-base nanocrystalline thin ribbon, Acta Phys Sinica. 56(2007) 4009-4011.
Google Scholar
[13]
F. Bruno, C. Pierre, Continuous-annealing method for producing a flexible, cured, soft magnetic amorphous alloy ribbon, J Appl Phys. 111(2012) 07A309.
DOI: 10.1063/1.3671431
Google Scholar
[14]
I. Škorvánek, J. Marcin, T. Krenický, J. Kováča, P. Švecb and D. Janičkovičb, Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys, J Magn Magn Mat. 304(2006) 203-207.
DOI: 10.1016/j.jmmm.2006.02.120
Google Scholar
[15]
S.H. Guo, Y.H. Zhang, Y. Wang, Y. Qi and X.L. Wang, Effects of transverse magnetic heat treatment on the magnetic properties of Fe-based amorphous alloy with high saturation magnetic induction, J Magn Mater Device. 40(2009) 38-40.
Google Scholar
[16]
K. Suzuki, N. Ito, J.S. Garitaonandia, J.D. Cashion and G. Herzer, Local random magnetocrystalline and macroscopic induced anisotropies in magnetic nanostructures, J Non Cryst Solids. 354(2008) 5089-5092.
DOI: 10.1016/j.jnoncrysol.2008.06.118
Google Scholar