Investigation of the Morphotropic Phase Boundary (MPB) of (1-x-y)BaZrO3-x(K0.45Na0.5Li0.05)NbO3-yBi (Mg0.5Ti0.5)O3

Article Preview

Abstract:

Lead-based piezoelectric ceramics have excellent piezoelectric properties with the compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB)[1,2]. In these materials, the dielectric and piezoelectric properties show the maximal values at MPB. For lead-free piezoelectric ceramics, finding the MPB area is a promising way to improve their properties. In this paper, the (1-x-y)BaZrO3-x(K0.45Na0.5Li0.05)NbO3-yBi (Mg0.5Ti0.5)O3 lead-free piezoelectric ceramics were prepared by solid-state reaction method, and their piezoelectric properties and dielectric properties were investigated. With the increase of KNLN content, the crystal structure changed from rombohedral phase to tetragonal phase, thus existed a MPB[3,4] between rombohedral and tetragonal phase. At room temperature, the specimen with the composition at MPB (x=0.93, y=0.01) shows the optimal piezoelectric properties (d33=225pC/N and kp=45%), which indicates that this material is a potential lead-free piezoceramic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-246

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Moulson and J. M. Herbert: Electroceramics – Materials, Properties, Applications (Chapman & Hall, London, 1990).

Google Scholar

[2] J. M. Herbert: Ferroelectric transducers and sensors (Gordon and Breach Science Publishers, New York., 1982).

Google Scholar

[3] G. Fan, W. Z. Lu, X. H. Wang and F. Liang: Appl. Phys. Lett. 91 (2007) 202908.

Google Scholar

[4] A. B. Kounga, S. T. Zhang, W. Jo, T. Granzow and J. Rodel: Appl. Phys. Lett. 92 (2008) 222902.

Google Scholar

[5] R. Wang, H. Bando, and M. Itoh: Appl. Phys. Lett. 95 (2009) 092905.

Google Scholar

[6] R. Wang, H. Bando, M. Kidate, Y. Nishihara, and M. Itoh: Jpn. J. Appl. Phys. 50 (2011) 09ND10.

Google Scholar

[7] W. Liu and X. Ren: Phys. Rev. Lett. 103 (2009) 257602.

Google Scholar

[8] K. Yan, K. Matsumoto, T. Karaki, and M. Adachi: J. Am. Ceram. Soc. 93 (2010) 3823.

Google Scholar

[9] T. Takenaka: Materials Integration 22 (2009) 35 [in Japanese].

Google Scholar

[10] S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura: Jpn. J. Appl. Phys. 46 (2007) 7039.

Google Scholar

[11] H. Birol, D. Damjanovic, and N. Setter: J. Eur. Ceram. Soc. 26 (2006) 861.

Google Scholar

[12] H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka: Jpn. J. Appl. Phys. 46 (2007) 1081.

Google Scholar

[13] T. Karaki and M. Adachi: Chouonpa techno 21 (2009) 1 [in Japanese].

Google Scholar

[14] P. K. Davies and J. Z. Tong: J. Am. Ceram. Soc, 80 (1997) 1727.

Google Scholar

[15] J. H. Gao, D. Z. Xue, Y. Wang. D. Wang and L. X. Zhang, Appl. Phys. 99 (2011) 092901.

Google Scholar

[16] K. Gallucci, P. Villa, G. Groppi, N. Usberti, G. Marra, Catalysis today. 197 (2012) 236.

DOI: 10.1016/j.cattod.2012.08.034

Google Scholar

[17] S. Sharma and D. A. Hall, J Mater Sci: Mater Electron. 21 (2010) 405.

Google Scholar

[18] R. Waesche, W. Denner, and H. Schulz: Mater. Res. Bull. 16 (1981) 497.

Google Scholar

[19] A. W. Hewat: J. Phys. C: Solid Sate Phys. 6 (1973) 2559.

Google Scholar

[20] A. M. Glazer, S. A. Mabud, and R. Clarke: Acta Crystallopr. Sec. B 34 (1978) 1060.

Google Scholar