A Model of Ferroelectric Field-Effect Transistor after Ionizing Radiation

Article Preview

Abstract:

A theoretical model for radiation effect in a metal-ferroelectric-semiconductor (MFS) field-effect transistor was proposed by considering the fixed charges (Qfx) and interface charges (Qit) induced by ionizing radiation. In this model, the energy band-bending and surface charge in Si at a given gate bias were calculated systematically as a function of fixed charges (Qfx) and interface charges (Qit). The drain-source current (ID) was derived in an exact form without any approximation. All modeling done in this work was generalized to both n and p type Si substrates with an easy sign of the Fermi level potential in the formalism. The derived results demonstrate that the symmetry of polarization versus gate voltage curve of the MFS structure degrades when Qfx and Qit increase, which can explain the imprint behavior successfully. Additionally, the residual polarization in the ferroelectric field-effect transistor decreases with increasing Qfx and Qit, which can account for the polarization reduction. As expected, the calculated transfer characteristic of the ferroelectric FET shows that the subthreshold voltage is significantly affected by Qfx and Qit. This investigation may provide some useful insights for the space applications of ferroelectric FET’s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-255

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. Scott, Science 315, (2007), p.954.

Google Scholar

[2] T. P. Juan, C. Y. Chang, and J. Y. Lee, IEEE Electron Device Lett. 27, (2006), p.217.

Google Scholar

[3] H. Ishiwara, Integr. Ferroelectr. 34, (2001), p.11.

Google Scholar

[4] J. P. Han and T. P. Ma, Appl. Phys. Lett. 72, (1998), p.1185.

Google Scholar

[5] R. A. Moore, J. M. Benedetto, J. M. McGarrity, and F. B. McLean, IEEE Trans. Nucl. Sci. 38, (1991), p.1078.

Google Scholar

[6] J. F. Scott, C. A. Araujo, H. Brett Meadows, L. D. McMillan, and A. Shawabkeh, J. Appl. Phys. 66, (1989), p.1444.

Google Scholar

[7] N. Menou, A.-M. Castagnos, Ch. Muller, D. Goguenheim, L. Goux, D. J. Wouters, J.-L. Hodeau, E. Dooryhee, and R. Barrett, J. Appl. Phys. 97, (2005), p.044106.

DOI: 10.1063/1.1851598

Google Scholar

[8] C. M. Othon, F. B. Bateman, and S. Ducharme, J. Appl. Phys. 98, (2005), p.014106.

Google Scholar

[9] L. Courtade, Ch. Muller, G. Andreoli, Ch. Turquat, L. Goux and D. J. Wouters, Appl. Phys. Lett. 89, (2006), p.113510.

DOI: 10.1063/1.2339044

Google Scholar

[10] S. Vanishri, J. N. Babu Reddy, and H. L. Bhat, J. Appl. Phys. 101, (2007), p.054106.

Google Scholar

[11] M. Zanata, N. Wrachien, and A. Cester, IEEE Trans. Nucl. Sci. 55, (2008), p.3327.

Google Scholar

[12] P. K. Petrov, N. McN Alford, A. Kozyrev, M. Gaidukov, A. Altynnikov, A. Vasilevskiy, G. Konoplev, A. Tumarkin, and A. Gagarin. J. Appl. Phys. 107, (2010), p.084102.

DOI: 10.1063/1.3327236

Google Scholar

[13] T. Matsumoto, and M. Okamoto, J. Appl. Phys. 109, (2011), p.014104.

Google Scholar

[14] S. S. Fu, H. Yu, X. Y. Luo, Y. L.Jiang, and G. D. Zhu, IEEE Electron Device Lett. 33, (2012), p.95.

Google Scholar

[15] S. L. Miller and P. J. McWhorter, J. Appl. Phys. 72, (1992), p.5999.

Google Scholar

[16] S. M. Sze, Physics of semiconductor devices, 2nd ed., Wiley, New York (1981).

Google Scholar

[17] J. R. Brews, J. Appl. Phys. 45, (1974), p.1276.

Google Scholar

[18] Z. Li, Journal of Instrumentation (JINST), March (2009), pp.1-31.

Google Scholar