[1]
M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and materials transactions A. 33 (2002) 477-486.
DOI: 10.1007/s11661-002-0109-2
Google Scholar
[2]
Y. S. Tian, C. Z. Chen, L. X. Chen, Q. H. Huo, Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique, Scripta Mater. 54 (2006) 847-852.
DOI: 10.1016/j.scriptamat.2005.11.011
Google Scholar
[3]
M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.
DOI: 10.1016/j.scriptamat.2006.04.022
Google Scholar
[4]
S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloys, Elsevier Science, 2010.
Google Scholar
[5]
S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe β titanium alloy, Acta Mater. 57 (2009) 2136-2147.
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[6]
A. Devaraj, R. Williams, S. Nag, R. Srinivasan, H. L. Fraser, R. Banerjee, Three-dimensional morphology and composition of omega precipitates in a binary titanium–molybdenum alloy, Scripta Mater. 61 (2009) 701-704.
DOI: 10.1016/j.scriptamat.2009.06.006
Google Scholar
[7]
F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scripta Mater. 54 (2006) 645-648.
DOI: 10.1016/j.scriptamat.2005.10.024
Google Scholar
[8]
A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, H. L. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater. 60 (2012) 596-609.
DOI: 10.1016/j.actamat.2011.10.008
Google Scholar
[9]
B. Tang, Y. W. Cui, H. Chang, H. C. Kou, J. S. Li, L. Zhou, A phase-field approach to athermal β→ ω transformation, Comp. Mater. Sci. 53 (2012) 187-193.
DOI: 10.1016/j.commatsci.2011.09.011
Google Scholar
[10]
Y. L. Hao, S. J. Li, B. B. Sun, M. L. Sui, R. Yang, Ductile titanium alloy with low Poisson's ratio, Phys. Rev. Lett. 98 (2007) 216405-216408.
DOI: 10.1103/physrevlett.98.216405
Google Scholar
[11]
N. Masahashi, Y. Mizukoshi, S. Semboshi, N. Ohtsu, T. K. Jung, S. Hanada, Photo-induced characteristics of a Ti–Nb–Sn biometallic alloy with low Young's modulus, Thin Solid Films. 519 (2010) 276-283.
DOI: 10.1016/j.tsf.2010.07.114
Google Scholar
[12]
H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki, Mechanical properties and shape memory behavior of Ti-Nb alloys, Mater. Trans. 45 (2004) 2443-2448.
DOI: 10.2320/matertrans.45.2443
Google Scholar
[13]
L. Vitos, I. A. Abrikosov, B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87(2001) 156401-156404.
DOI: 10.1103/physrevlett.87.156401
Google Scholar
[14]
G. B. Grad, P. Blaha, J. Luitz, K. Schwarz, A. F. Guillermet, S. J. Sferco, Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo, Phys. Rev. B. 62 (2000) 12743-12753.
DOI: 10.1103/physrevb.62.12743
Google Scholar
[15]
J. Gyanchandani, S. K. Sikka, Electronic basis of the hcp, omega and bcc phases in group IVB elements under pressure or on alloying, Solid State Commun. 156 (2013) 80-84.
DOI: 10.1016/j.ssc.2012.11.013
Google Scholar
[16]
G. Aurelio, A. Fernández Guillermet, G. J. Cuello, J. Campo, Structural properties and high-temperature reactions of the metastable Ω phase in Zr–Nb alloys, J. Nucl. Mater. 341 (2005) 1-11.
DOI: 10.1016/j.jnucmat.2004.12.001
Google Scholar
[17]
L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B. 64 (2001) 14107-14117.
DOI: 10.1103/physrevb.64.014107
Google Scholar
[18]
L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, 2007.
Google Scholar
[19]
J. Kollár, L. Vitos, H. L. Skriver, H. Dreyssé, Electronic structure and physical properties of solids: the uses of the LMTO method, Lecture Notes in Physics (Springer-Verlag, Berlin, 2000). (2000).
DOI: 10.1007/3-540-46437-9
Google Scholar
[20]
J. S. Faulkner, The modern theory of alloys, Prog.Mater.Sci. 27(1982)1–187.
Google Scholar
[21]
B. L. Gyorffy, Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potentail Model of Random Substitutional Alloys, Phys. Rev. B. 5 (1972) 2382-2384.
DOI: 10.1103/physrevb.5.2382
Google Scholar
[22]
A. V. Dobromyslov, V. A. Elkin, Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods, Scripta Mater. 44 (2001) 905-910.
DOI: 10.1016/s1359-6462(00)00694-1
Google Scholar
[23]
C. X. Li, H. B. Luo, Q. M. Hu, R. Yang, F. Yin, O. Umezawa, L. Vitos, Lattice parameters and relative stability of α "phase in binary titanium alloys from first-principles calculations, Solid State Commun. 159 (2013) 70-75.
DOI: 10.1016/j.ssc.2013.01.026
Google Scholar
[24]
J. Sun, Q. Yao, H. Xing, W. Y. Guo, Elastic properties of β, α''and ω metastable phases in Ti–Nb alloy from first-principles, Journal of Physics: Condensed Matter. 19 (2007) 486215-486222.
DOI: 10.1088/0953-8984/19/48/486215
Google Scholar