Composition-Dependent Collapse of β {111} Planes Leading to ω Precipitation in Ti-Nb Alloys: A First-Principles Study

Article Preview

Abstract:

The effects of Nb content on the collapse of β {111} planes leading to ω phase precipitation were investigated in binary Ti-Nb alloys by first-principles exact muffin-tin orbitals-coherent potential approximation (EMTO-CPA) method. In accordance with the accepted mechanism of the beta to omega transformation occurring due to the collapse of the bcc {111} planes, the total energies of β Ti-Nb binary alloys containing multiple states corresponding to different Nb concentration ranging from 20at.% to 30at.% were calculated. The results indicated that the total energies for the same Nb content are not monotonically decreasing with the z (z denotes the degree of collapse of β {111} planes) value increasing, but keeping an energy barrier to cross. The energy barrier increases gradually along with increasing Nb content. The density of states (DOS) was given to elucidate the changes of electronic structure during the collapse of β {111} planes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-170

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and materials transactions A. 33 (2002) 477-486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[2] Y. S. Tian, C. Z. Chen, L. X. Chen, Q. H. Huo, Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique, Scripta Mater. 54 (2006) 847-852.

DOI: 10.1016/j.scriptamat.2005.11.011

Google Scholar

[3] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[4] S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloys, Elsevier Science, 2010.

Google Scholar

[5] S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe β titanium alloy, Acta Mater. 57 (2009) 2136-2147.

DOI: 10.1016/j.actamat.2009.01.007

Google Scholar

[6] A. Devaraj, R. Williams, S. Nag, R. Srinivasan, H. L. Fraser, R. Banerjee, Three-dimensional morphology and composition of omega precipitates in a binary titanium–molybdenum alloy, Scripta Mater. 61 (2009) 701-704.

DOI: 10.1016/j.scriptamat.2009.06.006

Google Scholar

[7] F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scripta Mater. 54 (2006) 645-648.

DOI: 10.1016/j.scriptamat.2005.10.024

Google Scholar

[8] A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, H. L. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater. 60 (2012) 596-609.

DOI: 10.1016/j.actamat.2011.10.008

Google Scholar

[9] B. Tang, Y. W. Cui, H. Chang, H. C. Kou, J. S. Li, L. Zhou, A phase-field approach to athermal β→ ω transformation, Comp. Mater. Sci. 53 (2012) 187-193.

DOI: 10.1016/j.commatsci.2011.09.011

Google Scholar

[10] Y. L. Hao, S. J. Li, B. B. Sun, M. L. Sui, R. Yang, Ductile titanium alloy with low Poisson's ratio, Phys. Rev. Lett. 98 (2007) 216405-216408.

DOI: 10.1103/physrevlett.98.216405

Google Scholar

[11] N. Masahashi, Y. Mizukoshi, S. Semboshi, N. Ohtsu, T. K. Jung, S. Hanada, Photo-induced characteristics of a Ti–Nb–Sn biometallic alloy with low Young's modulus, Thin Solid Films. 519 (2010) 276-283.

DOI: 10.1016/j.tsf.2010.07.114

Google Scholar

[12] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki, Mechanical properties and shape memory behavior of Ti-Nb alloys, Mater. Trans. 45 (2004) 2443-2448.

DOI: 10.2320/matertrans.45.2443

Google Scholar

[13] L. Vitos, I. A. Abrikosov, B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87(2001) 156401-156404.

DOI: 10.1103/physrevlett.87.156401

Google Scholar

[14] G. B. Grad, P. Blaha, J. Luitz, K. Schwarz, A. F. Guillermet, S. J. Sferco, Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo, Phys. Rev. B. 62 (2000) 12743-12753.

DOI: 10.1103/physrevb.62.12743

Google Scholar

[15] J. Gyanchandani, S. K. Sikka, Electronic basis of the hcp, omega and bcc phases in group IVB elements under pressure or on alloying, Solid State Commun. 156 (2013) 80-84.

DOI: 10.1016/j.ssc.2012.11.013

Google Scholar

[16] G. Aurelio, A. Fernández Guillermet, G. J. Cuello, J. Campo, Structural properties and high-temperature reactions of the metastable Ω phase in Zr–Nb alloys, J. Nucl. Mater. 341 (2005) 1-11.

DOI: 10.1016/j.jnucmat.2004.12.001

Google Scholar

[17] L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B. 64 (2001) 14107-14117.

DOI: 10.1103/physrevb.64.014107

Google Scholar

[18] L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, 2007.

Google Scholar

[19] J. Kollár, L. Vitos, H. L. Skriver, H. Dreyssé, Electronic structure and physical properties of solids: the uses of the LMTO method, Lecture Notes in Physics (Springer-Verlag, Berlin, 2000). (2000).

DOI: 10.1007/3-540-46437-9

Google Scholar

[20] J. S. Faulkner, The modern theory of alloys, Prog.Mater.Sci. 27(1982)1–187.

Google Scholar

[21] B. L. Gyorffy, Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potentail Model of Random Substitutional Alloys, Phys. Rev. B. 5 (1972) 2382-2384.

DOI: 10.1103/physrevb.5.2382

Google Scholar

[22] A. V. Dobromyslov, V. A. Elkin, Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods, Scripta Mater. 44 (2001) 905-910.

DOI: 10.1016/s1359-6462(00)00694-1

Google Scholar

[23] C. X. Li, H. B. Luo, Q. M. Hu, R. Yang, F. Yin, O. Umezawa, L. Vitos, Lattice parameters and relative stability of α "phase in binary titanium alloys from first-principles calculations, Solid State Commun. 159 (2013) 70-75.

DOI: 10.1016/j.ssc.2013.01.026

Google Scholar

[24] J. Sun, Q. Yao, H. Xing, W. Y. Guo, Elastic properties of β, α''and ω metastable phases in Ti–Nb alloy from first-principles, Journal of Physics: Condensed Matter. 19 (2007) 486215-486222.

DOI: 10.1088/0953-8984/19/48/486215

Google Scholar