Design, Preparation and Microwave-Absorbing Properties of Sandwich-Structure Radar-Absorbing Materials Reinforced by Glass and SiC Fibres

Article Preview

Abstract:

In order to broaden the absorbing bandwidth of radar-absorbing materials (RAMs), a type of sandwich-structure RAMs (SSRAMs) derived from a Salisbury absorber and comprising two dielectric layers and one resistive sheet was investigated. In this paper, the impedance characteristics of the SSRAMs were analysed and the mechanisms of broadening microwave-absorbing bandwidth were interpreted using a Smith chart. In order to realise the study’s SSRAMs, plain-woven glass fibre fabric and silicon carbide (SiC) fibre fabric with low electrical resistivity were employed as reinforcements of the dielectric layers and lossy layer, respectively. The microwave-absorbing properties of the SSRAMs were measured and compared with simulated results. The results showed that the experimental and simulated results were in good agreement, that the SSRAMs had better wideband microwave-absorbing properties and that the microwave-absorbing bandwidth at reflectivity below −10 dB can reach 11.6 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

573-579

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Cao, R.R. Qin, C.J. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate, Mater. Des. 24(2003) 391–396.

DOI: 10.1016/s0261-3069(02)00119-x

Google Scholar

[2] D.L. Zhao, Y.J. Zhang, H.Y. Gong, L. Zhao, Effects of BN whiskers on dielectric and mechanical properties of BNw/Si3N4 composites, Mater. Res. Innov. 15(2011) 226–228.

Google Scholar

[3] H.T. Liu, H.F. Cheng, Z.Y. Chu, D.Y. Zhang, Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches, Mater. Des. 28(2007) 2166–2171.

DOI: 10.1016/j.matdes.2006.06.011

Google Scholar

[4] I.M. De Rosa, R. Mancinelli, F. Sarasini, M.S. Sarto, A. Tamburrano, Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens, IEEE Trans. Electromagn. Compat. 51(2009) 700–707.

DOI: 10.1109/temc.2009.2018125

Google Scholar

[5] P.C. Kim, W.S. Chin, D.G. Lee, I.S. Seo, EM characteristics of the RAS composed of E-glass/epoxy composite and single dipole FSS element, Compos. Struct. 75(2006) 601–609.

DOI: 10.1016/j.compstruct.2006.04.085

Google Scholar

[6] N.Q. Zhao, T.C. Zou, C.S. Shi, J.J. Li, W.K. Guo, Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites, Mater. Sci. Eng. B. 127(2006) 207–211.

DOI: 10.1016/j.mseb.2005.10.026

Google Scholar

[7] L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Low-frequency and broad band metamaterial absorber: design, fabrication, and characterization, Appl. Phys. A. 105(2011) 49–53.

DOI: 10.1007/s00339-011-6552-4

Google Scholar

[8] Y.Q. Pang, Y.J. Zhou, J. Wang, Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers, J. Appl. Phys. 110(2011) 023704.

DOI: 10.1063/1.3608169

Google Scholar

[9] H.T. Liu, H.F. Cheng, J. Wang, G.P. Tang, Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases, J. Alloys Compd. 491(2010) 248–251.

DOI: 10.1016/j.jallcom.2009.09.163

Google Scholar

[10] Y.N. Kazantsev, A.V. Lopatin, N.E. Kazantseva, A.D. Shatrov, V.P. Maltsev, J. Vilcakova, P. Saha, Broadening of operating frequency band of magnetic-type radio absorbers by FSS incorporation, IEEE Trans. Antenn. Propag. 258(2010) 1227–1235.

DOI: 10.1109/tap.2010.2041316

Google Scholar

[11] Y.E. Erdemli, K. Sertel, R.A. Gilbert, D.E. Wright, J.L. Volakis, Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays, IEEE Trans. Antenn. Propag. 50(2002) 1716–1724.

DOI: 10.1109/tap.2002.807377

Google Scholar

[12] R. Nicol, P. Smith, P.R. Raggatt, The use of the simplex method for the optimisation of non-linear functions on a laboratory microcomputer, Comput. Biol. Med. 16(1986) 145–152.

DOI: 10.1016/0010-4825(86)90038-7

Google Scholar

[13] E.C. Martinez, A simplex search method for experimental optimization with multiple objectives, Comput. Chem. Eng. 26(2006) 377–382.

Google Scholar

[14] E.C. Martinez, The statistical simplex method for experimental optimization with process data, Comput. Chem. Eng. 20(2005) 31–36.

Google Scholar

[15] S. Yajima, K. Okamura, J. Hayashi, M. Omori, Synthesis of continuous SiC fibers with high tensile strength, J. Am. Ceram. Soc. 59(1976) 324–327.

DOI: 10.1111/j.1151-2916.1976.tb10975.x

Google Scholar

[16] T.J. Hu, X.D. Li, G.Y. Li, D.Y. Wang, J. Wang, SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes, Mater. Sci. Eng. B.176(2011) 706–710.

DOI: 10.1016/j.mseb.2011.02.024

Google Scholar

[17] D.Y. Wang, X.H. Mao, Y.C. Song, Y.D. Wang, SiC fiber with low electrical resistivity and oxygen content, Sci. China Tech. Sci. 53(2010) 1038–1044.

DOI: 10.1007/s11431-010-0106-4

Google Scholar

[18] D.Y. Wang, Y.C. Song, Y.Q. Li, Effect of composition and structure on specific resistivity of SiC fibers, Trans. Nonferrous Met. Soc. China.22(2012) 1133–1139.

DOI: 10.1016/s1003-6326(11)61295-8

Google Scholar

[19] R. He, D. Jiang, X. Li, Determination of carbon and oxygen in silicon carbide fibers, J. Chin. Ceram. Soc. 31(2003) 386–388.

Google Scholar

[20] H.J. Yu, X.G. Zhou, W. Zhang, Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces, Compos. Sci. Technol. 71(2011) 699–704.

DOI: 10.1016/j.compscitech.2011.01.014

Google Scholar

[21] H.J. Yu, X.G. Zhou, H.L. Wang, S. Zhao, J.G. Yang, Z.L. Huang, Processing and properties of 2D SiC/SiC composites by precursor infiltration and pyrolysis, J. Cent. South. Univ. Technol. 16(2009) 190–194.

DOI: 10.1007/s11771-009-0032-4

Google Scholar

[22] Y.F. Xu, T.X. Su, M.N. Yuan, Study of interfacial stress distribution of SiC fibre reinforced titanium matrix composites under transverse tensile loading, Mater. Res. Innov. 17(2013) 6–9.

DOI: 10.1179/1433075x12y.0000000029

Google Scholar

[23] H.T. Liu, H.F. Cheng, J. Wang, R.C. Che, G.P. Tang, Q.S. Ma, Microstructural investigations of the pyrocarbon interphase in SiC fiber-reinforced SiC matrix composites, Mater. Lett. 63(2009) 2029–2031.

DOI: 10.1016/j.matlet.2009.06.040

Google Scholar

[24] H.T. Liu, H.F. Cheng, H. Tian, Design, preparation and microwave absorbing properties of resin matrix composites reinforced by SiC fibers with different electrical properties, Mater. Sci. Eng. B. 179(2014) 17–24.

DOI: 10.1016/j.mseb.2013.09.019

Google Scholar