Preparation and Thermal Stability Properties of Epoxy Matrix/Nano-SiO2 Composites

Article Preview

Abstract:

The addition of nanoparticles has been proven to a high potential application for improving polymer thermal stability properties. In this paper, the nanocomposites based on epoxy matrix modified with different mass ratio of silica nanoparticles were investigated. In order to disperse and incorporate silica nanoparticles into epoxy matrix, silica nanoparticles were modified with coupling agent (Gamma-glycidoxy propyl trimethoxy silan, KH-560). FTIR spectra showed that KH-560 was absorbed on the surface of SiO2 nanoparticles. The thermo gravimetric traces indicated that the addition of silica nanoparticles has improved the thermal stability properties of epoxy matrix significantly. The decomposition temperature of nanocomposite increased with the addition of nanoSiO2, and the temperatures of the maximum rate of degradation of the unmodified nanocomposite with 0wt%, 1wt%, 3wt%, 5wt% nanoSiO2 were 401oC, 405oC, 411oC, 421oC, respectively. The temperatures for 50% weight loose of the modified nanocomposite with 1wt% and 3wt% nanoSiO2 were 389oC and 405oC, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

588-592

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Gu, Q.Y. Zhang, J. Dang, J.P. Zhang, S.J. Chen, Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites, Polym. Bull. 62(2009) 689-697.

DOI: 10.1007/s00289-009-0045-z

Google Scholar

[2] S. Kiatkamjornwong, W. Yusabai, Effect of epoxy resin-silane on physical properties of coated films on steel surfaces, Surf. Coat. Int. 87(2004) 149-157.

DOI: 10.1007/bf02699629

Google Scholar

[3] V. N. Bogomolov, L.S. Parfen'eva, L.M. Sorokin, I.A. Smirnov, H. Misiorek, A. Jezowski, J. Hutchison, Structural and thermal properties of the opal-epoxy resin nanocomposite, Phys. Solid State. 44(2002) 1061-1066.

DOI: 10.1134/1.1485008

Google Scholar

[4] Y.F. Chen, W. Yue, Z.Z. Bian, Y. Fan, Q.Q. Lei, Preparation and properties of KH550-Al2O3/PI–EP nanocomposite material, Iran. Polym. J. 22(2013) 377-383.

DOI: 10.1007/s13726-013-0137-3

Google Scholar

[5] M. Battistella, M. Cascione, B. Fiedler, M.H.G. Wichmann, M. Quaresimin, K. Schulte, Fracture behaviour of fumed silica/epoxy nanocomposites, Composites Part A. 39(2008) 1851-1858.

DOI: 10.1016/j.compositesa.2008.09.010

Google Scholar

[6] C.B. Na, L.S. Schadler, R.W. Siegel, Synthesis and mechanical properties of TiO2-epoxy nanocomposites. NanoStuct. Mater. (1999).

Google Scholar

[7] Z.H. Guo, T.Y. Kim, K. Lei, T. Pereira, J.G. Sugar, H.T. Hahn, Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach, Compos. Sci. Technol. 68(2008) 164-170.

DOI: 10.1016/j.compscitech.2007.05.031

Google Scholar

[8] S.H. Hsu, C.W. Chou, S.M. Tseng, Enhanced Thermal and Mechanical Properties in Polyurethane/Au Nanocomposites, Macromol.mater.Eng. 289(2004) 1096-110.

DOI: 10.1002/mame.200400171

Google Scholar

[9] H.C. Kuan, C.C.M. Ma, W.P. Chang, S.M. Yuen, H.H. Wu, T.M. Lee, Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Compos. Sci. Technol. 65(2005) 1703-1710.

DOI: 10.1016/j.compscitech.2005.02.017

Google Scholar

[10] H.W. He, K.X. Li,J. Wang, G.H. Sun, Y.Q. Li, J.L. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites, Mater. Des. 32(2011) 4521-4527.

DOI: 10.1016/j.matdes.2011.03.026

Google Scholar

[11] Z.J. Song, J.L. Xie, P.H Zhou, X. Wang, T. Liu, L.J. Deng, Toughened polymer composites with flake carbonyl iron powders and their electromagnetic/absorption properties, J. Alloys Compd. 551(2013) 677-681.

DOI: 10.1016/j.jallcom.2012.11.065

Google Scholar

[12] W.H. Xu, C. Wei,J. Lv, H.X. Liu, X.H Huang, T.X. Liu, Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites, J. Nanomater. (2013).

DOI: 10.1155/2013/319840

Google Scholar

[13] Y.X. Zhou, V.J Rangari, H. Mahfuz, S. Jeelani, P.K. Mallick, Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites, Mater. Sci. Eng., A. 402(2005) 109-117.

DOI: 10.1016/j.msea.2005.04.014

Google Scholar

[14] X.Y. Ma, W.D Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane, Polym. Degrad. Stab. 94(2009) 1103-1109.

DOI: 10.1016/j.polymdegradstab.2009.03.024

Google Scholar

[15] H. Zou, S.S. Wu, and J. Shen, Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev. 108(2008) 3893-3957.

DOI: 10.1021/cr068035q

Google Scholar