Effect of Milling Time on Microstructure of CNTs/Al5083 Composites Powder by High Energy Milling

Article Preview

Abstract:

The 2wt%CNTs/Al5083 composite powder was prepared by High Energy Milling, and the effect of the milling time on microstructure of the 2wt.%CNTs/Al5083 composite powder was investigated. The Microstructure was observed by SEM, TEM and XRD. The result showed that prolonging the milling time lead to the reduction of the Medium particle size D50. The best D50 was obtained at milling 2.5h with the particle size of 22.33μm. CNTs homogeneous embedded into the Al-matrix when the milling time was 2.5h. The average crystallite size of Al was 46.4nm after milling for 2.5h, and the average crystallite size of Al also increased as the recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

608-612

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iijima S. Helical microtubules of graphitic carbon[J]. nature, 1991, 354(6348): 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Thostenson E T, Ren Z, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review[J]. Composites science and technology, 2001, 61(13): 1899-1912.

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[3] Esawi A M K, Farag M M. Carbon nanotube reinforced composites: potential and current challenges[J]. Materials & design, 2007, 28(9): 2394-2401.

DOI: 10.1016/j.matdes.2006.09.022

Google Scholar

[4] Feng Y, Yuan H L, Zhang M. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes[J]. Materials characterization, 2005, 55(3): 211-218.

DOI: 10.1016/j.matchar.2005.05.003

Google Scholar

[5] Pérez-Bustamante R, Estrada-Guel I, Amézaga-Madrid P, et al. Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion[J]. Journal of Alloys and Compounds, 2010, 495(2): 399-402.

DOI: 10.1016/j.jallcom.2009.10.099

Google Scholar

[6] Shimizu Y, Miki S, Soga T, et al. Multi-walled carbon nanotube-reinforced magnesium alloy composites[J]. Scripta Materialia, 2008, 58(4): 267-270.

DOI: 10.1016/j.scriptamat.2007.10.014

Google Scholar

[7] George R, Kashyap K T, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53(10): 1159-1163.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[8] Li Q, Viereckl A, Rottmair C A, et al. Improved processing of carbon nanotube/magnesium alloy composites[J]. Composites Science and Technology, 2009, 69(7): 1193-1199.

DOI: 10.1016/j.compscitech.2009.02.020

Google Scholar

[9] Esawi A, Morsi K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 646-650.

DOI: 10.1016/j.compositesa.2006.04.006

Google Scholar

[10] Perez-Bustamante R, Estrada-Guel I, Antunez-Flores W, et al. Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes[J]. Journal of Alloys and Compounds, 2008, 450(1): 323-326.

DOI: 10.1016/j.jallcom.2006.10.146

Google Scholar

[11] Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, et al. Development of new Al-based nanocomposites by mechanical alloying[J]. Materials Science and Engineering: A, 2008, 480(1): 392-396.

DOI: 10.1016/j.msea.2007.09.060

Google Scholar