[1]
C. Zhou, H.Q. Zhu, J. WEI, L.K. Zhou, Z.Y. Huang, Status quo and problems analysis of wind power generation in China, Energy Research and Information. 28(2012) 69-75.
Google Scholar
[2]
G.J. Cui, Q.L. Bi, J. Yang, W.M. Liu, Fabrication and study on tribological characteristics of bronze–alumina–silver composite under sea water condition, Mater. Des. 46(2013) 473–484.
DOI: 10.1016/j.matdes.2012.10.053
Google Scholar
[3]
A. Moshkovich, V. Perfilyev, L. Meshi, S. Samuha, S. Cohen, H. Cohen, A. Laikhtman, L. Rapoport, Friction, wear and structure of Cu samples in the lubricate steady friction state, Tribol. Int. 46(2012) 154-160.
DOI: 10.1016/j.triboint.2011.03.013
Google Scholar
[4]
Y.P. Tang, H.Z. Liu, H.J. Zhao, L. Liu, Y.T. Wu, Friction and wear properties of copper matrix composites reinforced with short carbon fibers, Mater. Des. 29(2008) 257–261.
DOI: 10.1016/j.matdes.2006.11.011
Google Scholar
[5]
G.J. Cui, Q.L. Bi, S.Y. Zhu, J. Yang, W.M. Liu, Tribological behavior of Cu–6Sn–6Zn–3Pb under sea water, distilled water and dry-sliding conditions, Tribol. Int. 55(2012) 126–134.
DOI: 10.1016/j.triboint.2012.06.007
Google Scholar
[6]
A.M. Kovalchenko, O.I. Fushchich, S. Danyluk, The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper, Wear. 290(2012) 106–123.
DOI: 10.1016/j.wear.2012.05.001
Google Scholar
[7]
K.W. Liew, U. Nirmal, Frictional performance evaluation of newly designed brake pad materials, Mater. Des. 48(2013) 25–33.
DOI: 10.1016/j.matdes.2012.07.055
Google Scholar
[8]
X.C. Ma, G.Q. He, D.H. He, C.S. Chen, Z.F. Hu, Sliding wear behavior of copper–graphite material for use in maglev transportation system, Wear. 265(2008) 1087–1092.
DOI: 10.1016/j.wear.2008.02.015
Google Scholar
[9]
W.L. Ma, J.J. Lu, Effect of sliding speed on surface modification and tribological behavior of copper–graphite composite, Tribol. Lett. 41(2011) 363–370.
DOI: 10.1007/s11249-010-9718-x
Google Scholar
[10]
J.K. Xiao, L. Zhang, K.C. Zhou, X.P. Wang, Microscratch behavior of copper–graphite composites, Tribol. Int. 57(2013) 38–45.
DOI: 10.1016/j.triboint.2012.07.004
Google Scholar
[11]
H. Kato, M. Takama, Y. Iwai, K. Washida, Y. Sasaki, Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide, Wear. 255(2003) 573–578.
DOI: 10.1016/s0043-1648(03)00072-3
Google Scholar
[12]
K. Rajkumar, S. Aravindan, Tribological performance of microwave sintered copper–TiC–graphite hybrid composites, Tribol. Int. 44(2011) 347–358.
DOI: 10.1016/j.triboint.2010.11.008
Google Scholar
[13]
G.J. Cui, Q.L. Bi, S.Y. Zhu, J. Yang, W.M. Liu, Tribological properties of bronze–graphite composites under sea water condition, Tribol. Int. 53(2012) 76–86.
DOI: 10.1016/j.triboint.2012.04.023
Google Scholar
[14]
V. Rajkovic, D. Bozic, M. T. Jovanovic, Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites, Mater. Des. 31(2010) 1962–1970.
DOI: 10.1016/j.matdes.2009.10.037
Google Scholar
[15]
A. Fathy, F. Shehata, M. Abdelhameed, M. Elmahdy, Compressive and wear resistance of nanometric alumina reinforced copper matrix composites, Mater. Des. 36(2012) 100–107.
DOI: 10.1016/j.matdes.2011.10.021
Google Scholar
[16]
Z. Lu, Y. Liu, B.W. Liu, M.L. Liu, Micro-tribological properties of hydroxyapatite-based composites in dry sliding, Mater. Des. 46(2013) 794–801.
DOI: 10.1016/j.matdes.2012.11.014
Google Scholar